【代码精读】optee的线程向量表

本文深入探讨Optee的线程向量表,解释其作为运行时进入Optee的唯一入口的机制。内容包括原理介绍,如ATF与Optee的交互路径,以及代码分析,展示如何通过线程向量表地址同步来确保ATF和Optee之间的协调。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### FPFH 特征用于点云配准的代码实现 Fast Point Feature Histograms (FPFH) 是一种广泛应用于三维点云处理中的局部描述子算法,能够有效捕捉点云表面几何特性。通过计算每个点周围的局部特征直方图来表示该点及其邻域的信息。 #### 计算 FPFH 描述符 为了计算 FPFH 描述符,通常会采用 PCL 库(Point Cloud Library)。以下是使用 Python 和 PCL 实现 FPFH 的具体方法: ```python import numpy as np import open3d as o3d def compute_fpfh_features(pcd, radius_normal=0.1, radius_feature=0.5): """ Compute Fast Point Feature Histograms for a given point cloud. :param pcd: Input point cloud data :type pcd: Open3D.geometry.PointCloud :return: Computed FPFH feature object """ # Estimate normals pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=30)) # Create KD tree for efficient neighbor search pcd_tree = o3d.geometry.KDTreeFlann(pcd) # Calculate FPFH features fpfh = o3d.pipelines.registration.compute_fpfh_feature( pcd, o3d.geometry.KDTreeSearchParamHybrid(radius=radius_feature, max_nn=100)) return fpfh ``` 此函数接收一个 `PointCloud` 对象作为输入参数,并返回对应的 FPFH 特征对象。其中两个重要参数分别是法线估计半径 (`radius_normal`) 和特征提取窗口大小 (`radius_feature`)。 #### 执行 ICP 配准过程 基于上述获得的 FPFH 特征向量,可以进一步执行迭代最近点 (ICP) 算法完成两幅点云之间的精确匹配: ```python def execute_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size): distance_threshold = voxel_size * 1.5 result = o3d.pipelines.registration.registration_ransac_based_on_feature_matching( source_down, target_down, source_fpfh, target_fpfh, mutual_filter=True, max_correspondence_distance=distance_threshold, estimation_method=o3d.pipelines.registration.TransformationEstimationPointToPoint(False), ransac_n=4, checkers=[o3d.pipelines.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9), o3d.pipelines.registration.CorrespondenceCheckerBasedOnDistance(distance_threshold)], criteria=o3d.pipelines.registration.RANSACConvergenceCriteria(4000000, 500)) return result ``` 这段代码实现了全局粗配准流程,利用 RANSAC 方法寻找最佳变换矩阵以使源点云尽可能贴近目标点云[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Arm精选

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值