为什么深度学习图像分类的输入多是224*224

https://www.toutiao.com/a6702959853393936909/

做过图像分类项目或者看过文章的小伙伴们应该都知道,在论文中进行各类方法的比较时,要求使用同样的数据集。而为了公平的比较,网络的输入大小通常都是224*224的大小,那为什么呢?有同学思考过这个问题吗?

我们都知道,一个图像分类模型,在图像中经历了下面的流程。

从输入image->卷积和池化->最后一层的feature map->全连接层->损失函数层softmax loss。

「AI-1000问」为什么深度学习图像分类的输入多是224*224

 

从输入到最后一个卷积特征feature map,就是进行信息抽象的过程,然后就经过全连接层/全局池化层的变换进行分类了,这个feature map的大小,可以是3*3,5*5,7*7等等。

解答1:在这些尺寸中,如果尺寸太小,那么信息就丢失太严重,如果尺寸太大,信息的抽象层次不够高,计算量也更大,所以7*7的大小是一个最好的平衡。

另一方面,图像从大分辨率降低到小分辨率,降低倍数通常是2的指数次方,所以图像的输入一定是7*2的指数次方。以ImageNet为代表的大多数分类数据集,图像的长宽在300分辨率左右。

解答2:所以要找一个7*2的指数次方,并且在300左右的,其中7*2的4次方=7*16=112,7*2的5次方等于7*32=224,7*2的6次方=448,与300最接近的就是224了。

这就是最重要的原因了,当然了对于实际的项目来说,有的不需要这么大的分辨率,比如手写数字识别MNIST就用28*28,有的要更大,比如细粒度分类。

今天的问题就到这里了,不知道,你有没有留意过不同的输入大小对分类器性能的影响呢

CNN网络模型训练,数据为王,使用相同机器学习算法,不同质量的数据能训练出不同效果的模型如果你用谷歌搜索“AI+农业”或者“人工智能+农业”,就会发现与AI在其他领域的应用相比,农业依旧是未经广泛开垦的“蛮荒之地”。 专注新农业服务的新客科技创始人刘新农表示,这背后的原因有很,基本上可以归结为三个原因:缺乏数据,人才稀少,鲜有关注。 但现在,情况有了变化。8月底,AI Challenger 2018联合新客科技发起了世界上首个农作物病害检测竞赛。竞赛中,会给参赛选手提供近5万张标注图片,覆盖10种植物的27种病害。 据悉,从开始比赛到现在,已经吸引了来自世界各地的29个国家的近1200支团队参赛。 从这个竞赛的情况来看,AI+农业,似乎正在迎来春天。 AI+农业 AI+农业,是一个非常广泛的领域。今年的AI Challenger竞赛只选择了其中的一个方向:农作物病害检测。 虽然只是其中的一个方向,但影响力不容小觑。据中国统计年鉴,2016年,由农业病害等灾害造成的直接损失超5000亿元,占农业生产总值的8.48%。 刘新农介绍说,在农业生产中,农药使用也在急剧增加。这不仅导致农药残留引发社会问题,还会加剧对环境的污染。对农作物进行准确的病害识别并推荐合适的防治措施,不仅对于农业生产意义重大,对于改善整个社会经济环境也有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值