import cv2 as cv
import numpy as np
def measure_object(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU) # 返回的ret是阈值, 该处需取反
print("threshold value : %s"%ret)
cv.imshow("binary", binary)
dst = cv.cvtColor(binary, cv.COLOR_GRAY2BGR)
# 找二值图binary的轮廓,cv.RETR_EXTERNAL(只检索外部轮廓)、cv.RETR_TREE(检索全部轮廓)
contours, hireachy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
for i, contour in enumerate(contours):
area = cv.contourArea(contour) # 获取轮廓面积
x, y, w, h = cv.boundingRect(contour) # 获取轮廓外接矩形,返回四个参数(x,y)为矩形左上角的坐标,(w,h)是矩形的宽和高
rate = min(w, h)/max(w, h) # w和h里小的除以大的
print("rectangle rate %s"%rate)
mm = cv.moments(contour) # 求取轮廓的几何矩
print(type(mm)) # mm是字典类型
cx = mm['m10']/mm['m00']
cy = mm['m01']/mm['m00']
cv.circle(dst, (np.int(cx), np.int(cy)), 3, (0, 255, 255), -1) # 根据几何矩获取的中心点,画出中心圆
# cv.rectangle(image, (x, y), (x+w, y+h), (0, 0, 255), 2) # 根据轮廓外接矩形数据画出矩形
print("contour area : %s"%area)
approxCurve = cv.approxPolyDP(contour, 4, True) # 4是与阈值的间隔大小,越小越易找出,True是是否找闭合图像
print(approxCurve.shape) # 打印该点集的shape,第一个数是代表了点的个数,也就是边长连接逼近数
if approxCurve.shape[0] > 5: # 多个的是圆形
cv.drawContours(dst, contours, i, (0, 0, 255), 2) # 画出轮廓
if approxCurve.shape[0] == 4: # 4个的是矩形
cv.drawContours(dst, contours, i, (0, 255, 255), 2)
if approxCurve.shape[0] == 3: # 3个的是三角形
cv.drawContours(dst, contours, i, (255, 0, 255), 2)
cv.imshow("measure contours", dst)
print("--------- Hello Python ---------")
src = cv.imread("D:/opencv/circle.jpg")
measure_object(src)
cv.waitKey(0)
cv.destroyAllWindows()
approxPolyDP(curve, epsilon, closed, approxCurve=None): # real signature unknown; restored from __doc__
第一个参数curve:输入的点集,直接使用轮廓点集contour
第二个参数epsilon:指定的精度,也即是原始曲线与近似曲线之间的最大距离,越小越贴合
第三个参数closed:若为true,则说明近似曲线是闭合的,反之,若为false,则断开
第四个参数approxCurve:输出的点集,当前点集是能最小包容指定点集的。画出来即是一个多边形;