快手如何是从模型规范开始进行数据治理的,安排

 

吃粽子、赛龙舟、喝雄黄

一年一度的端午节又到啦,在这佳节之际,祝福所有的朋友端午安

康、万事如意、财源滚滚啦~

上篇文章是基于快手的直播场景和大家聊了聊数据质量的话题,收

到了很多朋友的好评。今天趁着过节,赶紧再更新一篇,巧的是该

篇文章也是出自快手的实际落地方案。今天咱聊一聊数据治理这个

大话题,欢迎各位铁子批评指正。

摘要:今天分享的主要内容是模型规范在数据治理中的地位以及快手在模型规范上的具体落地方案。通过本文,希望兄弟们能收获一二。

分享时间:2021年6月14号

内容分享:孙老师

内容整理:皮卡丘

主要内容:

    1、 数仓模型简介

    2、数据模型规范简介

    3、快手数据治理的背景

    4、快手模型规范治理实践

    5、快手数据治理体系思考

一、数仓模型简介

前言:作为在数据仓库混迹多年的老炮儿,这个问题肯定难不倒兄弟们。但为了贴合今天主题,再跟兄弟们聊一聊。如有表达的不准确的,希望各位兄弟批评指正。

正文:数据仓库建模包含了几种数据建模技术,其主要是Inmon(范式建模)、ER(ER建模)、Kimball(维度建模)。

1.1、Inmon(范式建模):

Inmon建模的方式是自下而上的,那么什么是自下而上呢?我的理解是先打好广而全的数据基础,考虑当下业务场景中的所有可能,基于范式建模的理念去设计数据仓库,然后基于各种业务场景去开发数据集市以及BI应用。

1.2、ER(ER建模):

E-R图的定义: ER模型,全称为实体联系模型、实体关系模型或实体联系模式图(ERD)是一种逻辑模型。

E-R的使用方法 :

  • E-R图为实体-联系图,提供了表示实体型、属性和联系的方法,用来描述现实世界的概念模型。实体关系图表示在信息系统中概念模型的数据存储。

    • 实体:现实生活中任何可以被认知,区分的事物(长方体)

    • 联系:实体之间的关系,可以一点一,一对多,多对多(菱形)

    • 属性:实体的某一特性称为属性(椭圆形)。

1.3、Kimball(维度建模):

kimball的方式是自上而下的,这种方式就不用考虑很大的框架。

针对某一个数据域或者业务进行维度建模,得到最细粒度的事实表和维度表。形成适用于某一个数据域、业务的数据集市之后,再集成各个数据集市为数据仓库。

这其中的要点就是保持各集市之间的一致性维度和一致性事实,不然在集成为数据仓库的时候很麻烦,会无法确认各个集市之间的数据具有关联性、通用性。

kimball的这种范式就是开发速度比较快,相对比较省事,但是后续维护会比较麻烦。

其中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值