python弹性碰撞次数圆周率_关于完全弹性碰撞和圆周率的关系所设计的易语言程序...

25788e4d30df1a25ff279d8f2ad846ea.png

关于完全弹性碰撞和圆周率的关系所设计的易语言程序

.版本 2

.程序集 窗口程序集_启动窗口

.程序集变量 n, 整数型

.程序集变量 m1, 整数型

.程序集变量 m2, 整数型

.程序集变量 v1, 小数型

.程序集变量 v2, 小数型

.程序集变量 v11, 小数型

.程序集变量 v22, 小数型

.子程序 _按钮1_被单击

n = 0

m1 = 到数值 (编辑框1.内容)

m2 = 1

v1 = -1

v2 = 0

.判断循环首 (v1 < v2)

v11 = (v1 × (m1 - m2) + 2 × m2 × v2) ÷ (m1 + m2)

v22 = (v2 × (m2 - m1) + 2 × m1 × v1) × (m1 + m2)

.如果 (v22 < 0)

v2 = -1 × v22

n = n + 1

.否则

v2 = v22

.如果结束

v1 = v11

n = n + 1

.判断循环尾 ()

编辑框2.内容 = 到文本 (n)

设计这个程序呢,主要是验证完全弹性碰撞和圆周率的关系,详情参见视频https://www.bilibili.com/video/av40873215/

但是我这个程序似乎不能证明.......

求大佬指明!!

内容概要:本文深入探讨了多种高级格兰杰因果检验方法,包括非线性格兰杰因果检验、分位数格兰杰因果检验、混频格兰杰因果检验以及频域因果检验。每种方法都有其独特之处,适用于不同类型的时间序列数据。非线性格兰杰因果检验分为非参数方法、双变量多元检验,能够在不假设数据分布的情况下处理复杂的关系。分位数格兰杰因果检验则关注不同分位数下的因果关系,尤其适合经济数据的研究。混频格兰杰因果检验解决了不同频率数据之间的因果关系分析问题,而频域因果检验则专注于不同频率成分下的因果关系。文中还提供了具体的PythonR代码示例,帮助读者理解应用这些方法。 适合人群:从事时间序列分析、经济学、金融学等领域研究的专业人士,尤其是对非线性因果关系感兴趣的学者技术人员。 使用场景及目标:①研究复杂非线性时间序列数据中的因果关系;②分析不同分位数下的经济变量因果关系;③处理不同频率数据的因果关系;④识别特定频率成分下的因果关系。通过这些方法,研究人员可以获得更全面、细致的因果关系洞察。 阅读建议:由于涉及较多数学公式编程代码,建议读者具备一定的统计学编程基础,特别是对时间序列分析有一定了解。同时,建议结合具体案例进行实践操作,以便更好地掌握这些方法的实际应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值