机器学习实战之决策树--Python/scikit-learn实现

目录

简单理论介绍

ID3--信息增益

C4.5--信息增益率

CART--基尼系数

决策树对比

机器学习实战-决策树预测隐形眼镜类型(ID3)

Python实现

Scikit-learn实现


简单理论介绍

ID3--信息增益

信息熵( Information Entropy):度量了事物的不确定性,越不确定的事物,它的熵就越大;

随机变量X它的熵表达式如下:

H(X) = -\sum\limits_{i=1}^{n}p_i logp_i

其中 n 代表 X 的 n 种不同的离散取值。而 p_i 代表了X取值为 i 时的概率。熵只依赖X的分布,和X的取值没有关系

联合熵:熟悉上面单个变量的熵,多个变量的联合熵就很好理解了,此处给出两个变量X,Y的联合熵。

H(X,Y) = -\sum\limits_{i=1}^{n}p(x_i,y_i)logp(x_i,y_i)

条件熵H(X|Y):条件熵类似于条件概率,它度量了我们的X在知道Y以后剩下的不确定性。

H(X|Y) = -\sum\limits_{i=1}^{n}p(x_i,y_i)logp(x_i|y_i) = \sum\limits_{j=1}^{n}p(y_j)H(X|y_j)

信息增益(Information Gain):它度量了X在知道Y以后不确定性减少程度,这个度量我们在信息论中称为互信息,记为I(X,Y)。在决策树ID3算法中叫做信息增益。

I(X,Y) = H(X)-H(X|Y)

=================================================================

举一个信息增益计算的具体的例子。比如我们有15个样本D,输出为0或者1。其中有9个输出为0, 6个输出为1。 样本中有个特征A,取值为A1,A2和A3。在取值为A1的样本的输出中,有3个输出为1, 2个输出为0,取值为A2的样本输出中,2个输出为1,3个输出为0, 在取值为A3的样本中,4个输出为1,1个输出为0.

样本D的熵

H(D) = -(\frac{9}{15}log_2\frac{9}{15} + \frac{6}{15}log_2\frac{6}{15}) = 0.971

样本D在特征A下的条件熵为:

H(D|A) = \frac{5}{15}H(D1) + \frac{5}{15}H(D2) + \frac{5}{15}H(D3)

= -\frac{5}{15}(\frac{3}{5}log_2\frac{3}{5} + \frac{2}{5}log_2\frac{2}{5}) - \frac{5}{15}(\frac{2}{5}log_2\frac{2}{5} + \frac{3}{5}log_2\frac{3}{5}) -\frac{5}{15}(\frac{4}{5}log_2\frac{4}{5} + \frac{1}{5}log_2\frac{1}{5})

= 0.888

信息增益为:I(D,A) = H(D) - H(D|A) = 0.083

ID3的缺点:

1,不能处理连续特征;

2,用信息增益作为标准容易偏向于取值较多的特征;

3,缺失值处理的问题

4,过拟合问题

=================================================================

C4.5--信息增益率

对ID3的改进方案。

对于ID3不能处理连续特征, C4.5的思路是将连续的特征离散化。(二分法,区间划分)

对于ID3容易偏向于取值较多的特征的问题。C4.5引入一个信息增益比的变量IR(X,Y),它是信息增益和特征熵的比值:

I_R(D,A) = \frac{I(A,D)}{H_A(D)}

其中D为样本特征输出的集合,A为样本特征,对于特征熵$$H_A(D)$$, 表达式如下:

$$H_A(D) = -\sum\limits_{i=1}^{n}\frac{|D_i|}{|D|}log_2\frac{|D_i|}{|D|}$$

其中n为特征A的类别数,$$Di$$为特征A的第i个取值对应的样本个数。D为样本个数。特征数越多的特征对应的特征熵越大,它作为分母,可以校正信息增益容易偏向于取值较多的特征的问题。

 

CART--基尼系数

在ID3算法中我们使用了信息增益来选择特征,信息增益大的优先选择。在C4.5算法中,采用了信息增益比来选择特征,以减少信息增益容易选择特征值多的特征的问题。但是无论是ID3还是C4.5,都是基于信息论的熵模型的,这里面会涉及大量的对数运算。能不能简化模型同时也不至于完全丢失熵模型的优点呢?有!CART分类树算法使用基尼系数来代替信息增益比,基尼系数代表了模型的不纯度,基尼系数越小,则不纯度越低,特征越好

在分类问题中,假设有K个类别,第k个类别的概率为 $$p_k$$, 则基尼系数的表达式为

$$Gini(p) = \sum\limits_{k=1}^{K}p_k(1-p_k) = 1- \sum\limits_{k=1}^{K}p_k^2$$

如果是二类分类问题,计算就更加简单了,如果属于第一个样本输出的概率是 p,则基尼系数的表达式为:

Gini(p)=2p*(1-p)

对于个给定的样本D,假设有K个类别, 第k个类别的数量为$$C_k$$,则样本D的基尼系数表达式为:

$$Gini(D) = 1-\sum\limits_{k=1}^{K}(\frac{|C_k|}{|D|})^2$$

特别的,对于样本D,如果根据特征A的某个值a,把D分成D1和D2两部分,则在特征A的条件下,D的基尼系数表达式为:

$$Gini(D,A) = \frac{|D_1|}{|D|}Gini(D_1) + \frac{|D_2|}{|D|}Gini(D_2)$$

决策树对比:

三种决策树对比
模型支持任务树结构特征选择连续值处理缺失值处理剪枝
ID3分类多叉树信息增益---
C4.5分类多叉树信息增益比支持支持支持
CART分类、回归二叉树基尼系数支持支持支持

 

 

机器学习实战-决策树预测隐形眼镜类型(ID3)

Python实现

定义熵

from math import log
import operator

#熵的定义
def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet: #the the number of unique elements and their occurance
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob, 2) #log base 2
    return shannonEnt

划分数据集:按照给定的特征划分数据集

def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]     #chop out axis used for splitting
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

选择最好的数据集划分方式

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):        #iterate over all the features
        featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
        uniqueVals = set(featList)       #get a set of unique values
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
        if (infoGain > bestInfoGain):       #compare this to the best gain so far
            bestInfoGain = infoGain         #if better than current best, set to best
            bestFeature = i
    return bestFeature    

多数表决发决定该叶子节点的分类

def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

递归构建决策树

def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):
        return classList[0]#stop splitting when all of the classes are equal
    if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
    return myTree

使用决策树执行分类

def classify(inputTree, featLabels, testVec):
    firstStr = list(inputTree)[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)
    key = testVec[featIndex]
    valueOfFeat = secondDict[key]
    if isinstance(valueOfFeat, dict):
        classLabel = classify(valueOfFeat, featLabels, testVec)
    else: classLabel = valueOfFeat
    return classLabel

使用决策树预测隐形眼镜类型

fr = open('lenses.txt')
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
lensesTree = createTree(lenses,lensesLabels)
print(lensesTree)

使用决策树自行预测

lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
classify(lensesTree, lensesLabels, lenses[0][:-1])

preds = []
for i in range(len(lenses)):
    pred = classify(lensesTree, lensesLabels, lenses[i][:-1])
    preds.append(pred)
print(preds)

Scikit-learn实现

这里用scikit-learn自带的数据-红酒数据

from sklearn import tree     #导包
from sklearn.datasets import load_wine #红酒数据集
from sklearn.model_selection import train_test_split  #数据划分训练集与测试集

#获取数据
wine = load_wine() 

#划分训练集与测试集
Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data,wine.target,test_size=0.3)

#实例化模型,划分规则用的是熵
clf = tree.DecisionTreeClassifier(criterion="entropy")

#拟合数据
clf = clf.fit(Xtrain, Ytrain)

#测试评分
score = clf.score(Xtest, Ytest)

#查看特征重要程度
clf.feature_importances_

决策树调用参考:https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier

#决策树参数表
class sklearn.tree.DecisionTreeClassifier(
criterion=’gini’,    #划分规则,基尼系数 或者 信息熵
splitter=’best’, 
max_depth=None, 
min_samples_split=2, 
min_samples_leaf=1, 
min_weight_fraction_leaf=0.0, 
max_features=None, 
random_state=None, 
max_leaf_nodes=None, 
min_impurity_decrease=0.0, 
min_impurity_split=None, 
class_weight=None, 
presort=False)

 

 

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值