文献1: Knowledge extraction and insertion to deep belief network for gearbox fault diagnosis
期刊名
- 期刊: Knowledge-Based Systems
- 影响因子: 8.139(2022年)
数据说明
- 数据来源: 齿轮箱实验台,包含11种健康状态:
- 1种正常状态(C1)
- 5种连续磨损齿等级(C3-C7)
- 1种裂纹齿(C8)
- 3种轴承故障(内圈、滚动体、保持架缺陷,C9-C11)
- 信号采集:
- 采样频率20 kHz,信号长度8192点,总样本数921×11(每个状态921个样本)。
- 实验条件包括不同转速(294、588、882 rpm)和无负载条件。
- 输入特征:
- 时域特征(13个):均方根(RMS)、峰度、波峰因子、偏度等。
- 频域特征(6个小波能量特征):基于Daubechies小波(db6)分解的6层能量。
实验说明
- 对比模型:
- 传统分类器:BP神经网络(BPN)、基于规则的INSS-KBANN、C4.5决策树。
- DBN变体:SYM-DBN(符号规则增强的DBN)。
- 评估指标:
- 总体分类准确率、混淆矩阵、特征可视化(LDA降维)。
- 关键结果:
- KBDBN在测试集上达到94.72%准确率,显著优于DBN(86.7%)和BPN(90.09%)。
- 对连续磨损等级(C5-C7)的分类存在混淆,但用户可接受(因故障特征相似)。
网络结构
- KBDBN(知识驱动的深度置信网络):
- 输入层: 19个特征(13时域 + 6频域)。
- RBM层: 两层堆叠RBM,第一层25个隐藏节点,第二层15个隐藏节点。
- 分类层: Softmax层,11个输出节点对应11种故障类别。
- 知识插入机制:
- 置信规则提取: 从RBM中提取规则(如“若特征x₁和x₂激活,则隐藏节点h₁激活”)。
- 分类规则提取: 使用遗传算法(GA)从数据中生成IF-THEN规则,插入分类层。
- 规则推理: 通过Rule-INF算法融合两类规则,动态调整网络推理逻辑。
性能提升手段
- 规则引导的网络初始化:
- 从数据中提取的高置信度规则用于初始化RBM权重,减少随机性。
- 规则筛选率(30%)平衡规则覆盖与模型复杂度。
- 特征重要性排序:
- 基于规则出现频率和置信度量化特征重要性(如特征16和15对分类贡献最高)。
- 动态微调策略:
- 预训练后固定RBM参数,仅微调分类层,避免知识丢失。
方法优势
- 可解释性: 通过规则提取揭示网络推理逻辑(如“高小波能量特征指示轴承故障”)。
- 抗噪性: 在强噪声下仍保持90%以上准确率,优于传统DBN。
- 自适应结构: 规则驱动的网络初始化减少超参数调优需求。
应用效果
- 在齿轮箱故障诊断中,KBDBN的混淆矩阵显示对正常状态(C1)和轴承故障(C9-C11)的识别准确率达100%。
- 特征可视化显示深层RBM能有效分离复杂故障模式(如磨损与裂纹)。
后期工作
- 模型扩展: 将规则插入机制应用于卷积神经网络(CNN)和稀疏自编码器(SAE)。
- 算法优化: 结合极值优化(EO)等新型进化算法提升规则提取效率。
- 工业部署: 开发轻量化版本,适配边缘计算设备(如风电场的嵌入式系统)。
文献2: A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox
期刊名
- 期刊: Renewable Energy
- 影响因子: 8.7(2022年)
数据说明
- 数据来源: 风力涡轮齿轮箱加速寿命测试(HALT),模拟实际工况(高负载、变转速)。
- 传感器配置:
- 4个振动传感器(低速轴、高速轴、行星齿轮内圈、扭矩臂)。
- 采样频率50 kHz,信号长度2048点,总运行时间430小时。
- 故障类型:
- 齿轮磨损、轴承滚道剥落、油滤金属碎屑(见图14)。
实验说明
- 对比模型:
- 统计模型:Gamma过程、Paris-Erdogan裂纹扩展模型。
- 数据驱动模型:LSSVM、传统粒子滤波(PF)。
- 评估指标:
- 剩余使用寿命(RUL)预测误差、平均绝对偏差(MAD)。
- 关键结果:
- Wiener过程模型结合NDA-FOA-PF的RUL预测误差最低(平均误差2.43%)。
- 多传感器融合模型比单传感器模型预测精度提升15%。
网络结构
- DBN-SOM-PF混合框架:
- DBN特征提取:
- 输入:多传感器振动信号拼接(8192维)。
- 编码层:8维特征(通过4层RBM压缩)。
- SOM健康评估:
- 10×5竞争层,计算最小量化误差(MQE)作为健康指标。
- PF参数优化:
- 果蝇算法(FOA)动态调整粒子权重,解决粒子退化问题。
- DBN特征提取:
性能提升手段
- 多尺度时间卷积:
- 膨胀卷积(dilation rate=1,2,3)捕获长周期退化趋势。
- 动态阈值机制:
- 自适应软阈值函数抑制特征图中的噪声干扰。
- 混合退化模型:
- Wiener过程刻画随机性,粒子滤波动态更新模型参数。
方法优势
- 鲁棒性: 在强背景噪声下,MQE指标仍能准确跟踪性能退化(信噪比-3dB时RMSE<5%)。
- 高效性: FOA优化使粒子滤波计算效率提升40%。
- 工程适用性: 无需人工特征工程,端到端预测齿轮箱剩余寿命。
应用效果
- 在HALT测试中,模型提前50小时检测到齿轮箱早期故障(MQE突增点)。
- RUL预测置信区间(95%)在故障前20小时收敛至±5小时范围内。
后期工作
- 在线监测: 开发实时数据流处理框架,适配风电场的SCADA系统。
- 故障阈值自适应: 结合工况数据动态调整MQE报警阈值。
- 多物理场融合: 引入温度、油液分析数据增强预测可靠性。
文献3: Gearbox fault diagnosis based on temporal shrinkage interpretable deep reinforcement learning under strong noise
期刊名
- 期刊: Engineering Applications of Artificial Intelligence
- 影响因子: 8.0(2022年)
数据说明
- 数据集:
- 数据集1: 行星齿轮箱(9种故障),含健康、齿轮断齿、轴承内外圈故障等。
- 数据集2: 平行齿轮箱(9种故障),故障类型与数据集1相似。
- 噪声添加:
- 高斯白噪声,信噪比(SNR)范围-3dB(强噪声)至∞(无噪声)。
- 信号长度: 2048点,采样频率5120 Hz。
实验说明
- 对比模型:
- 传统模型:MLP(手动特征+多层感知机)。
- 深度模型:DRSN(深度残差收缩网络)、MSCNN(多尺度CNN)。
- 强化学习模型:DMSRL(动态多尺度RL)、DIRL(可解释RL)。
- 评估指标:
- 五折交叉验证准确率、F1分数、特征可视化(t-SNE)。
- 关键结果:
- 在SNR=3dB时,DTSIRL在数据集1和2上的测试准确率分别为98.62%和98.64%。
- 噪声抑制模块使模型在-3dB下仍保持92.63%训练准确率。
网络结构
- DTSIRL(深度时间收缩可解释强化学习):
- SincNet层:
- 64个带通滤波器,核大小127,提取物理可解释的频域特征。
- 多尺度时间收缩残差网络(MTSRN):
- 三组残差模块,通道数64→128→256,结合膨胀卷积(dilation rate=1,2,3)。
- 自适应软阈值层动态滤除特征图中的噪声成分。
- Dueling DQN:
- 价值函数与优势函数分离,Q值计算为 ( Q = V + (A - \text{mean}(A)) )。
- SincNet层:
性能提升手段
- 频域先验知识嵌入:
- SincNet的带通滤波特性模拟专家经验,增强特征可解释性。
- 时间收缩模块:
- 多尺度膨胀卷积捕获长短期依赖,软阈值抑制无关噪声。
- 强化学习框架:
- 将故障分类建模为马尔可夫决策过程(CMDP),智能体通过奖励机制自主学习策略。
方法优势
- 物理可解释性: SincNet的滤波器频率响应与故障特征频段对齐(如轴承故障的特征频率)。
- 强抗噪性: 在-3dB噪声下,t-SNE可视化显示特征仍能清晰分离不同故障模式。
- 动态决策: Dueling DQN在复杂噪声环境中优先关注高价值特征(如冲击成分)。
应用效果
- 在行星齿轮箱数据集上,对轴承外圈故障(ORF)的召回率达99.5%。
- 时间收缩模块使模型在噪声环境下比MSCNN的F1分数提升12%。
后期工作
- 训练加速: 结合分布式强化学习框架(如A3C)减少交互训练时间。
- 跨领域泛化: 验证模型在航空发动机、工业机器人等场景的适用性。
- 硬件部署: 设计FPGA加速的嵌入式诊断系统,实现实时故障检测。
文献4:《Intelligent fault diagnosis of train axle box bearing based on parameter optimization VMD and improved DBN》
扩展内容
-
网络结构细节
- DBN架构:
- 输入层:接收由多尺度散布熵提取的1D特征向量,维度根据模态分量的多尺度分解结果确定。
- 隐藏层:经改进GWO优化后确定为3层,节点数分别为24、34、17。每层RBM(限制玻尔兹曼机)采用对比散度(CD)算法进行无监督预训练,逐层学习数据的概率分布。
- 输出层:采用Softmax分类器,对应4种故障类别(正常、外圈、内圈、滚动体故障)。
- 训练流程:
- 预训练:逐层训练RBM,通过Gibbs采样更新权重,学习数据的高阶特征。
- 微调:采用反向传播算法(BP)结合交叉熵损失函数,优化网络权重,学习率通过改进GWO优化为0.0019。
- DBN架构:
-
参数优化过程
- VMD参数优化:
- 适应度函数:最小包络熵 ( E_p = -\sum p_j \log p_j ),其中 ( p_j ) 为归一化包络信号。
- 改进GWO步骤:
- 非线性收敛因子:采用指数衰减策略 ( a = 2 \left( \frac{e^{t/t_{\text{max}}} - 1}{e - 1} \right) ),平衡全局与局部搜索。
- Levy飞行机制:引入随机步长 ( x_i’(t) = x_i(t) + l \cdot \text{Levy}(\lambda) ),增强跳出局部最优能力。
- 贪心选择:保留适应度更优的解,避免无效更新。
- DBN参数优化:
- 优化目标为最小化训练误差,搜索空间为隐藏层节点数(1-100)和学习率(0.001-1)。
- 通过改进GWO迭代搜索,最终确定最优参数组合(隐藏层[24, 34, 17],学习率0.0019)。
- VMD参数优化:
-
多尺度散布熵(MDE)计算
- 步骤:
- 对信号进行粗粒化处理,生成多尺度时间序列。
- 计算各尺度下的散布熵 ( DE ),反映信号复杂度。
- 组合多尺度熵值构成特征向量,输入DBN分类。
- 优势:相比单尺度熵(如样本熵、排列熵),MDE能捕捉信号在不同时间尺度下的动态特性,增强特征区分性。
- 步骤:
-
实验对比分析
- 对比方法:传统DBN、PSO-DBN、SSA-DBN、GWO-DBN。
- 结果:
方法 准确率 训练时间(秒) IGWO-DBN 99.4% 11.615 GWO-DBN 98.9% 11.71 SSA-DBN 98.9% 12.645 PSO-DBN 98.3% 10.446 原始DBN 97.8% 10.13 - 结论:改进GWO在精度和效率上均优于其他优化算法,尤其适用于微弱故障场景。
-
后期工作扩展
- 多传感器融合:集成温度、声发射等多模态数据,提升诊断鲁棒性。
- 在线诊断:开发实时信号处理模块,结合边缘计算实现车载故障监测。
- 迁移学习:将模型迁移至其他轴承类型(如电机轴承),验证泛化能力。
文献4:《A novel co-modulation and hybrid resolution strategy (CHRS) for fault diagnosis of planetary gearboxes》
扩展内容
-
协同调制模型(Co-Modulation Model)
- 物理意义:
- AM效应反映故障引起的幅值周期性波动(如齿面磨损导致的冲击幅值变化)。
- FM效应表征故障引起的瞬时频率偏移(如齿轮裂纹导致的啮合刚度变化)。
- 物理意义:
-
CHRS参数更新机制
-
噪声抑制机制
- 白噪声建模:噪声项 ( Q_{\text{rc}} \sim N(0,1) ) 通过高斯分布模拟环境干扰。
- 鲁棒性验证:
- 在SNR=0 dB条件下,CHRS仍能准确解析 ( A_i )、( B_i )(误差<5%),因偏微分过程自动抑制随机噪声的高频成分。
-
实验结果与可视化
- 分类准确率:
模型 准确率 本文CHRS模型 96.7% Feng模型(2012) 89.2% 对比模型(AM+FM) 92.1% - 三维可视化:
- 以 ( (A_{\text{sun}}, B_{\text{sun}}, A_{\text{shaft}}) ) 为坐标轴,不同故障类别在三维空间中呈现显著聚类(如缺齿故障集中在高 ( B_{\text{sun}} ) 区域)。
- 分类准确率:
-
后期工作扩展
- 非稳态工况适配:研究变速、变载条件下调制模型的动态调整策略。
- 多级齿轮箱建模:扩展至包含行星轮、太阳轮、齿圈的多级传动系统,分析耦合调制效应。
- 在线参数更新:结合实时数据流,实现调制参数的动态跟踪与故障预警。
总结
三篇文献分别从知识增强、混合预测和可解释强化学习三个方向推动齿轮箱故障诊断的技术边界:
- 知识驱动网络(KBDBN): 通过规则提取与插入,在保持深度学习性能的同时提升可解释性,适合需人工审核的工业场景。
- 混合退化模型(DBN-SOM-PF): 结合深度特征与统计模型,在寿命预测中平衡数据驱动与物理规律,适合长期健康管理。
- 可解释强化学习(DTSIRL): 在强噪声下通过频域先验与动态决策实现高鲁棒性,适合复杂工况的实时诊断。
未来挑战:
- 轻量化: 如何压缩模型以适应边缘设备(如风电场的低算力节点)。
- 跨域迁移: 解决不同齿轮箱型号、工况下的模型泛化问题。
- 多模态融合: 整合振动、声发射、热成像等多源数据提升诊断可靠性。
- 基于物理模型的信号解析与可解释诊断:物理驱动、数学解析、然后通过传统分类器做诊断;后续可以变工况、多物理场、实时参数;
- 数字孪生:???感觉主要是做全生命周期管理,但是谁信
- 融合路径:如“白盒”深度学习、混合建模,实际上实现“检测-分类”向“机理-预测”升级。