【论文阅读】 A Survey on Uncertainty Quantification Methods for Deep Learning:不确定性量化方法综述

总结:不确定性量化方法综述

期刊名与发表时间
  • 期刊名:ACM Computing Surveys
  • 发表时间:2023年8月
针对的新问题
  1. 深度神经网络(DNN)的过度自信预测问题:DNN在某些情况下会做出错误但过度自信的预测,这在自动驾驶、医疗诊断等高风险应用中可能导致严重后果。
  2. 不确定性来源的分类与量化:现有研究多从网络架构或贝叶斯方法角度分类,而忽略了不确定性来源(数据不确定性与模型不确定性)的区分,导致实践中难以选择合适的UQ方法。
  3. 实际应用中的需求:需要系统性地总结UQ方法,并比较其优缺点,以指导高风险领域的选择与优化。
  4. 不确定性的来源:在深度学习中,不确定性量化(UQ)旨在度量预测的不确定性,这对于高风险领域(如自动驾驶、医疗诊断等)至关重要。UQ主要分为两大类:数据不确定性和模型不确定性。
    数据不确定性(Aleatoric Uncertainty):指数据本身的随机性或噪声(如传感器噪声、标注不一致等),即使收集更多数据也无法减少。 模型不确定性(Epistemic Uncertainty):源于模型的缺陷或训练过程中的不完备性,可以通过增加训练数据来减少。

方法总结

1. 模型不确定性(Model Uncertainty)

定义:与模型训练过程相关的不确定性,可通过增加数据减少。
主要方法

  1. 贝叶斯神经网络(BNN)

    • **期刊: Machine Learning (2021)
    • **问题: 主要处理模型不确定性,特别是模型参数的不确定性。
    • 优化思路:通过变分推断(VI)、拉普拉斯近似(Laplace Approximation)、马尔可夫链蒙特卡洛(MCMC)等方法近似参数后验分布。
    • 效果:量化参数不确定性,帮助模型避免过拟合并增加泛化能力,但计算成本高。
    • 数据集:通用基准数据集(如ImageNet),适用于具有不完全数据和需要复杂模型的任务(如图像分类、回归任务)。
    • 提升效果:提供理论框架,但近似可能不准确。
    • 展望:计算复杂度高,难以在大规模数据上应用,因此需要优化推断方法和提高计算效率。改进先验分布的选择和推断算法,特别是在深度神经网络(DNN)中。
  2. 集成模型(Ensemble Models)

    • 期刊: Neural Networks (2022)
    • 问题: 通过训练多个神经网络并结合其输出,来量化模型不确定性。
    • 优化思路:通过不同初始化、架构或超参数训练多个模型,利用预测方差量化不确定性。 常见的策略有自举法(Bootstrap)、**超集成法(Hyperensemble)**等
    • 效果:简单易实现,但计算和存储成本高。 通过多模型的组合,能够更全面地捕获模型的不确定性(包括架构选择和数据集差异等)。
    • 数据集:分类和回归任务基准数据集。 适用于数据量较大的任务,尤其在高维数据中表现较好
    • 提升效果:显著提升不确定性估计鲁棒性。
    • 展望:集成方法的计算开销较大,需要优化内存使用和加速推理过程。更好的模型多样性和训练策略将有助于提高模型的准确性和鲁棒性。
  3. 样本分布相关方法

    • 高斯过程混合模型:结合DNN与高斯过程,捕捉样本稀疏性导致的不确定性。
    • 距离感知神经网络:通过约束特征空间距离(如双Lipschitz约束)避免特征坍塌。
    • 效果:适用于分布外(OOD)检测,但需设计特定约束。
2. 数据不确定性(Data Uncertainty)

定义:数据固有的随机性或噪声,无法通过增加数据减少。
主要方法

  1. 参数化模型

    • 优化思路:输出参数化分布(如高斯分布)的均值和方差。
    • 效果:直接建模数据噪声,但需假设分布形式。
    • 数据集:回归任务(如交通流量预测)。
  2. 非参数化模型

    • 预测区间(PI):直接输出置信区间,优化区间宽度和覆盖率。
    • 效果:无需分布假设,但需设计新损失函数。
  3. 深度生成模型

    • VAE/GAN/扩散模型:学习数据分布,生成多样本以量化不确定性。
    • 效果:适用于高维结构化数据(如医学图像),但训练复杂。
3. 联合量化模型与数据不确定性

主要方法

  1. 组合方法:如BNN+预测分布或集成+预测区间,但计算成本高。
  2. 证据
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值