引言
在 AI 时代,Prompt Engineering(提示工程)成为影响大模型性能的关键因素。如何让大语言模型(LLM)精准理解需求并生成可靠结果,成为开发者面临的核心挑战。Prompt Engineering(提示工程)正是解决这一问题的关键技术——通过设计结构化指令,引导模型输出符合预期的内容。结合所学课程,本篇文章将深入探讨 Prompt Engineering 的核心方法、优化策略,并结合案例解析如何提升 AI 任务的执行效果。
一、提示工程的核心构成
1.1 目的层设计原则
-
代码驱动:将prompt模板嵌入程序逻辑,例如通过JSON配置文件管理不同场景的提示词
-
系统集成:构建可复用的prompt pipeline,实现端到端的AI服务
# 示例:使用YAML固化prompt模板
prompt_config = {
"intent_classification": {
"instruction": "判断用户意图,从[查询, 投诉, 咨询]中选择",
"examples": [
{"input": "我的订单为什么还没发货?", "output": "查询"},
{"input": "产品有质量问题怎么办?", "output": "投诉"}
],
"output_format": "JSON"
}
}
1.2 结构要素解析
一个高质量的 Prompt 主要包含以下几个部分:
- 指示(Instruction):明确告诉 AI 需要执行的任务,例如撰写文章、翻译文本、代码生成等。
- 上下文(Context):提供足够的背景信息,使 AI 更好地理解任务。例如,可以利用 One-shot、Few-shot 和 In-context Learning 来提高模型理解能力。
- 输入(Input):需要 AI 处理的具体数据,如一段文本、代码片段或结构化数据(JSON、XML)。
- 输出格式(Output Format):定义预期的输出格式,例如 Markdown 结构、代码段、JSON 数据等,以便于后续处理。
组件 | 作用 | 设计技巧 |
---|---|---|
指令(Instruction) | 明确任务目标 | 使用动词开头,如"生成 |