文章目录
1.tokenizer
1.介绍
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
pt_model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
transformer 中tokenizer负责预处理文本, 首先会将文本分词(或比词更细的粒度subwords,标点符号…),将分词后的每个个体叫做tokens。然后会转化成一个一个id通过一个查询表(look-up table)
transformer中有三种主要的tokenizers :Byte-Pair Encoding (BPE), WordPiece, and SentencePiece
比如BertTokenizer就是用的WordPiece
对英文文本分词比想象的难,举例,对下面这句话分词

如果按照空格分词,会得到

可以看到标点符号黏在词的后面 “Transformers?” 还有“do.”
所以要将标点符号考虑进来,进行分词。

但是对于“Don’t” 这个词又没切好,最好将其切成["Do","n't"]
可以看到切词并不简单,要清楚的是每个模型都有其专属的tokenizer,分词规则。
与训练模型只有在使用相同分词规则的tokenizer时才会表现的好。
spaCy和Moses是两个主流的基于规则的分词器,使用这两个分词器进行分词的结果如下

可

本文详细介绍了Transformer模型中的分词技术,包括Tokenizer的作用、WordPiece、Byte-Pair Encoding (BPE)、Byte-level BPE、Unigram和SentencePiece等Subword Tokenization算法。解释了为何要使用Subword Tokenization以及各算法的工作原理和优缺点,以帮助理解如何处理文本分词中的挑战。
最低0.47元/天 解锁文章
7232

被折叠的 条评论
为什么被折叠?



