给定一个插入序列就可以唯一确定一棵二叉搜索树。然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到。例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结果。于是对于输入的各种插入序列,你需要判断它们是否能生成一样的二叉搜索树。
输入格式:
输入包含若干组测试数据。每组数据的第1行给出两个正整数N (≤10)和L,分别是每个序列插入元素的个数和需要检查的序列个数。第2行给出N个以空格分隔的正整数,作为初始插入序列。最后L行,每行给出N个插入的元素,属于L个需要检查的序列。
简单起见,我们保证每个插入序列都是1到N的一个排列。当读到N为0时,标志输入结束,这组数据不要处理。
输出格式:
对每一组需要检查的序列,如果其生成的二叉搜索树跟对应的初始序列生成的一样,输出“Yes”,否则输出“No”。
输入样例:
4 2
3 1 4 2
3 4 1 2
3 2 4 1
2 1
2 1
1 2
0
输出样例:
Yes
No
No
鸣谢青岛大学周强老师补充测试数据!
#include<stdio.h>
#include<stdlib.h>
struct Node
{
int data;
struct Node*Left;
struct Node*Right;
};
typedef struct Node* Poistion;
typedef Poistion BST;
BST Insert(BST T,int data)
{
if(T==NULL)
{
struct Node* q= (struct Node*)malloc(sizeof(struct Node));
q->data=data;
q->Left=NULL;
q->Right=NULL;
return q;
}
else
{
if(data<T->data)
{
T->Left=Insert(T->Left,data);
}
else
{
T->Right=Insert(T->Right,data);
}
return T;
}
}
int flag;
int Judge(BST T,BST TT)
{
if(T==NULL&&TT==NULL)return 1;
else if((T==NULL&&TT!=NULL)||(T!=NULL&&TT==NULL))return 0;
else if(T!=NULL&&TT!=NULL&&T->data!=TT->data)return 0;
else return(judge(T->Left,TT->Left)&&(T->Right,TT->Right));
}
int main()
{
int N,L;
while(scanf("%d",&N)&&N!=0)
{
scanf("%d",&L);
BST T1=NULL;
for(int i=0;i<N;i++)
{
int data;
scanf("%d",&data);
T1=Insert(T1,data);
}
BST Tn[L];
for(int i=0;i<L;i++)
{
Tn[i]=NULL;
for(int j=0;j<N;j++)
{
int data;
scanf("%d",&data);
Tn[i]=Insert(Tn[i],data);
}
}
for(int i=0;i<L;i++)
{
if(Judge(T1,Tn[i]))
{
printf("Yes\n");
}
else
printf("No\n");
}
}
return 0;
}