EM算法总结(1)

EM算法是一种处理含有隐变量的概率模型参数估计方法。在观测数据受隐变量影响,无法直接使用梯度下降时,EM算法通过迭代更新参数来逼近最优解。其主要包括E步和M步:E步计算Q函数,即完全数据对数似然函数关于观测数据条件概率的期望;M步则根据Q函数更新参数,直到收敛。博客详细介绍了EM算法的过程,并讨论了其收敛性。
摘要由CSDN通过智能技术生成

期望最大算法:Expectation Maximzation Algorithm(EM)

EM算法通过求在观测量和初始参数Z(隐变量)的条件概率的期望最大值,迭代更新参数,直到收敛到最优解。

i.解决问题

观测值受隐变量的影响,不能通过梯度下降更新参数(隐函数位置,无法简单直接地完成求导过程)
于是,引入EM算法,通过迭代的方式更新参数

ii.重要过程

1. 初始化参数值:由于参数是迭代更新,所以参数初始值会影响求解过程
在这里插入图片描述
2. 计算Q函数(E步)
补充概念:
完全数据:观测随机变量和隐随机变量连在一起称为完全数据;反之,之后Y则称为非完全数据。
Q函数的定义:完全数据的对数似然函数log( P,Z |​​ θ \theta θ )关于在给定观测
数据Y 和当前参数 ​​ θ ( i ) \theta^{(i)} θ(i)下对未观测数据 Z 的条件概率分布P ( Z|Y, ​​ θ ( i ) \theta^{(i)} θ(i))的期望称
为Q 函数。公式如下:
在这里插入图片描述
其中,​​ θ \theta θ​​ 是未知参数,​​ θ ( i ) \theta^{(i)} θ(i)则是上次更新之后的参数,作为Q函数中的已知量。​​
Q函数的推导过程可以在网上搜索或者见《统计学习方法》。
4. 更新参数(M步):由Q函数的定义可知,上述条件概率的期望越大,拟合的参数越接近真实现象。于是,M步为:
《统计学习方法》
M步用于更新参数

5. 重复步骤2和3直至收敛
至于EM算法是否收敛的问题,《统计学习方法》已经给出了详细的数学证明。
(如有问题和补充,欢迎大家留言或者私信)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值