EM算法总结

EM算法是一种处理不完全数据的有效策略,常用于高斯混合模型和隐马尔科夫模型。算法包括E步(期望步)和M步(极大化步),通过迭代优化模型参数。E步中,计算隐藏变量的期望;M步则极大化似然函数更新参数。在混合高斯分布情况下,E步计算每个数据点属于各高斯分量的概率,M步更新高斯分量的参数,如均值和方差,直至参数收敛。
摘要由CSDN通过智能技术生成

EM算法是一种优化迭代策略,最适合数据集不完全的情况, 常用来预测高斯混合模型的参数,隐式马尔科夫,该算法分为E步(期望步)和M布(极大步)。基本思想是:先根据已经观测的数据,估计出模型的参数,然后使用这些参数,估计缺失的数据,将缺失的数据和已经观测的数据再重新估计参数,如此反复,直到收敛。

算法步骤:

(1)随机初始化模型参数\theta的初值,设置最大迭代次数,输入观测数据X,联合分布p(x,z;\theta),条件分布p(z|x,\theta),这里z就是观测不到的数据,x是可以观测的数据。

(2)E步骤:求解Q_{i}(z_{i}) = p(z_{i}|x_{i},\theta _{j}),如果是混合高斯分布,求解:

E[z_{i,j}] = \tfrac{p(x=x_{i}|u=u_{i})}{p(x=x_{i})}=\tfrac{e^{-\tfrac{1}{2*\sigma ^{2}}*(x_{i}-x_{j})^{2}}}{\sum e^{-\tfrac{1}{2*\sigma ^{2}}*(x_{i}-x_{j})^{2}}}

(3)M步骤:极大化l(\theta _{i},\theta_{j})=\sum_{i=1}^{n}\sum_{z_{i}}Qlog\tfrac{p(x_{i},z_{i};\theta)}{Q},求导等于0即可,可以得到相应的\theta

如果是混合高斯分布,则公式如下:

u = \tfrac{\sum E[z]*X}{\sum E[z]}

(4)重新代入求解,如果目标参数收敛则可以退出。

参考:

https://blog.csdn.net/chasdmeng/article/details/38709063

https://blog.csdn.net/u010866505/article/details/77877345?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-5.no_search_link&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-5.no_search_link

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值