1.图基本介绍
1.1为什么要有图
线性表局限于一个直接前驱和一个直接后继的关系
树也只能有一个直接前驱也就是父节点
当我们需要表示多对多的关系时, 这里我们就用到了图
1.2图的常用概念
- 顶点(vertex)
- 边(edge)
- 路径
- 无向图(右图)
- 无向图: 顶点之间的连接没有方向,比如A-B,即可以是 A-> B 也可以 B->A
- 路径:比如从 D -> C 的路径有D->B->C 和D->A->B->C
- 有向图:顶点之间的连接有方向,比如A-B,只能是 A-> B 不能是 B->A
- 带权图:这种边带权值的图也叫网
2.图的表示方式
图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)
2.1邻接矩阵
邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1…n个点
2.2邻接表
邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失
邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成
邻接表说明:
标号为0的结点的相关联的结点为 1 2 3 4
标号为1的结点的相关联结点为 0 4
标号为2的结点相关联的结点为 0 4 5
…
3.图的创建
3.1代码思路
邻接矩阵法:
- 存储顶点:ArrayList
- 存储矩阵:int[][]
- 存储边数:Integer
3.2图的定义
图的定义:
- vertexList :存储顶点集合
- edges :邻结矩阵
- numOfEdges :边的数目(每添加一条边,numOfEdges 加一)
class Graph {
private ArrayList<String> vertexList; //存储顶点集合
private int[][] edges; //存储图对应的邻结矩阵
private int numOfEdges; //表示边的数目
//构造器
public Graph(int n) {
//初始化矩阵和vertexList
edges = new int[n][n];
vertexList = new ArrayList<String>(n);
numOfEdges = 0;
}
//插入结点
public void insertVertex(String vertex) {
vertexList.add(vertex);
}
//添加边
/**
*
* @param v1 第二个顶点对应的下标
* @param v2 第二个顶点对应的下标
* @param weight 表示权值,0:不连接;1:连接
*/
public void insertEdge(int v1, int v2, int weight) {
edges[v1][v2] = weight;
edges[v2][v1] = weight;
numOfEdges++;
}
//图中常用的方法
//返回结点的个数
public int getNumOfVertex() {
return vertexList.size();
}
// 得到边的数目
public int getNumOfEdges() {
return numOfEdges;
}
// 返回结点i(下标)对应的数据 0->"A" 1->"B" 2->"C"
public String getValueByIndex(int i) {
return vertexList.get(i);
}
// 返回v1和v2的权值
public int getWeight(int v1, int v2) {
return edges[v1][v2];
}
// 显示图对应的矩阵
public void showGraph() {
for (int[] link : edges) {
System.out.println(Arrays.toString(link));
}
}
}
代码测试
public static void main(String[] args) {
//测试一把图是否创建ok
String Vertexs[] = {
"A", "B", "C", "D", "E"};
int n = Vertexs.length; //结点的个数
// String Vertexs[] = {"1", "2", "3", "4", "5", "6", "7", "8"};
//创建图对象
Graph graph = new Graph(n);
//循环的添加顶点
for(String vertex: Vertexs) {
graph.insertVertex(vertex);
}
//添加边
//A-B A-C B-C B-D B-E
graph.insertEdge(0, 1, 1); // A-B
graph.insertEdge(0, 2, 1); // A-C
graph.insertEdge(1, 2, 1); // B-C
graph.insertEdge(1, 3, 1); // B-D
graph.insertEdge(1, 4, 1); // B-E
//显示一把邻结矩阵
graph.showGraph();
}
程序运行结果
[0, 1, 1, 0, 0]
[1, 0, 1, 1, 1]
[1, 1, 0, 0, 0]
[0, 1, 0, 0, 0]
[0, 1, 0, 0, 0]
4.图的遍历
4.1深度优先和广度优先
图遍历介绍:所谓图的遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略:
- 深度优先遍历
- 广度优先遍历
4.2图的深度优先遍历
深度优先遍历基本思想,图的深度优先搜索(Depth First Search)
- 深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点,可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
- 我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
显然,深度优先搜索是一个递归的过程
4.2.1代码思路
深度优先遍历算法步骤:
- 访问初始结点 v ,并标记结点 v 为已访问。
- 查找结点 v 的第一个邻接结点 w
- 如果 w 存在
- 如果 w 未被访问过,先标记 w 已被访问过,然后把 w 当做下一个 v ,查找 w 的第一个邻接点,继续执行深度遍历(这是个递归的过程)
- 如果 w 已经被访问过,则跳过此节点
- 如果 w 不存在,说明 v 真的没有下一个邻接点了,已经到头了,我们回到节点 v ,将从v的下一个结点继续查找
- 如果 w 存在
- 经过如上步骤,图中可能还有其他顶点未被访问,继续从下一个顶点执行如上操作
如何找到当前顶点的下一个邻接点?
假设当前正在遍历的顶点索引为 i ,顶点 i 的边信息存储在 edges[][]
数组中第 i 行
假设顶点 i 的当前遍历到的邻接点索引为 j ,即已经遍历到了 第 edges[i][j]
处,需要从 edges[i][j]之后去找顶点 i 的下一个邻接点索引
举例说明:
访问顶点 A 后输出 A ,A 的第一个邻接点是 B ,B 未被访问过,我们访问顶点 B
访问顶点 B 后输出 A–> B
B 的第一个邻接点 A 已经被访问过了
B 的第二个邻接点 C 还未被访问过,我们访问节点 C
访问节点 C
C 的第一个邻接点是 A ,然而 A 已经访问过了
C 的下一个邻接点是 B ,然而 B 也已经访问过了
除此之外,C 再也没有其他邻接点
我们回到顶点 B ,访问节点 B 的下一个邻接点:顶点 D
访问顶点 D 后输出 A --> B --> C --> D ,D 没有邻接节点,所以又返回到顶点 B ,访问顶点 B 的下一个邻接点:顶点 E
访问顶点 E 后输出 A --> B --> C --> D --> E,E 没有邻接节点,所以又返回到顶点 B
B 的所有邻接点都访问过了,返回到顶点 A
以上所有操作仅是一轮,还需要再对图中其他顶点进行以上操作
总结:
- 假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点