本文介绍了图的基本概念,包括无向图、有向图和带权图,并探讨了图的表示方式,如邻接矩阵和邻接表。接着详细阐述了图的创建及深度优先遍历(DFS)和广度优先遍历(BFS)的原理,包括代码思路和实现。DFS通过递归方式优先深入节点,而BFS则采用队列实现分层遍历。
摘要由CSDN通过智能技术生成

1.图基本介绍

1.1为什么要有图

线性表局限于一个直接前驱和一个直接后继的关系
树也只能有一个直接前驱也就是父节点
当我们需要表示多对多的关系时, 这里我们就用到了图

1.2图的常用概念

  • 顶点(vertex)
  • 边(edge)
  • 路径
  • 无向图(右图)
  • 无向图: 顶点之间的连接没有方向,比如A-B,即可以是 A-> B 也可以 B->A
  • 路径:比如从 D -> C 的路径有D->B->C 和D->A->B->C
    在这里插入图片描述
  • 有向图:顶点之间的连接有方向,比如A-B,只能是 A-> B 不能是 B->A
    在这里插入图片描述
  • 带权图:这种边带权值的图也叫网
    在这里插入图片描述

2.图的表示方式

图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)

2.1邻接矩阵

邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1…n个点

在这里插入图片描述

2.2邻接表

邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失
邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成
邻接表说明:
标号为0的结点的相关联的结点为 1 2 3 4
标号为1的结点的相关联结点为 0 4
标号为2的结点相关联的结点为 0 4 5

在这里插入图片描述

3.图的创建

3.1代码思路

邻接矩阵法:

  • 存储顶点:ArrayList
  • 存储矩阵:int[][]
  • 存储边数:Integer

在这里插入图片描述

3.2图的定义

图的定义:

  • vertexList :存储顶点集合
  • edges :邻结矩阵
  • numOfEdges :边的数目(每添加一条边,numOfEdges 加一)
class Graph {
   	

	private ArrayList<String> vertexList; //存储顶点集合
	private int[][] edges; //存储图对应的邻结矩阵
	private int numOfEdges; //表示边的数目
	
	//构造器
	public Graph(int n) {
   
		//初始化矩阵和vertexList
		edges = new int[n][n];
		vertexList = new ArrayList<String>(n);
		numOfEdges = 0;
		
	}
	
	//插入结点
	public void insertVertex(String vertex) {
   
		vertexList.add(vertex);
	}
	//添加边
	/**
	 * 
	 * @param v1 第二个顶点对应的下标
	 * @param v2 第二个顶点对应的下标
	 * @param weight 表示权值,0:不连接;1:连接
	 */
	public void insertEdge(int v1, int v2, int weight) {
   
		edges[v1][v2] = weight;
		edges[v2][v1] = weight;
		numOfEdges++;
	}
	
	//图中常用的方法
	//返回结点的个数
	public int getNumOfVertex() {
   
		return vertexList.size();
	}

	// 得到边的数目
	public int getNumOfEdges() {
   
		return numOfEdges;
	}

	// 返回结点i(下标)对应的数据 0->"A" 1->"B" 2->"C"
	public String getValueByIndex(int i) {
   
		return vertexList.get(i);
	}

	// 返回v1和v2的权值
	public int getWeight(int v1, int v2) {
   
		return edges[v1][v2];
	}

	// 显示图对应的矩阵
	public void showGraph() {
   
		for (int[] link : edges) {
   
			System.out.println(Arrays.toString(link));
		}
	}
}

代码测试

public static void main(String[] args) {
   
    //测试一把图是否创建ok
    String Vertexs[] = {
   "A", "B", "C", "D", "E"};
    int n = Vertexs.length;  //结点的个数
    // String Vertexs[] = {"1", "2", "3", "4", "5", "6", "7", "8"};

    //创建图对象
    Graph graph = new Graph(n);
    //循环的添加顶点
    for(String vertex: Vertexs) {
   
        graph.insertVertex(vertex);
    }

    //添加边
    //A-B A-C B-C B-D B-E 
    graph.insertEdge(0, 1, 1); // A-B
    graph.insertEdge(0, 2, 1); // A-C
    graph.insertEdge(1, 2, 1); // B-C
    graph.insertEdge(1, 3, 1); // B-D
    graph.insertEdge(1, 4, 1); // B-E
    //显示一把邻结矩阵
    graph.showGraph();

}

程序运行结果

[0, 1, 1, 0, 0]
[1, 0, 1, 1, 1]
[1, 1, 0, 0, 0]
[0, 1, 0, 0, 0]
[0, 1, 0, 0, 0]

4.图的遍历

4.1深度优先和广度优先

图遍历介绍:所谓图的遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略:

  • 深度优先遍历
  • 广度优先遍历

4.2图的深度优先遍历

深度优先遍历基本思想,图的深度优先搜索(Depth First Search)

  • 深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点,可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
  • 我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。

显然,深度优先搜索是一个递归的过程

4.2.1代码思路

深度优先遍历算法步骤:

  • 访问初始结点 v ,并标记结点 v 为已访问。
  • 查找结点 v 的第一个邻接结点 w
    • 如果 w 存在
      • 如果 w 未被访问过,先标记 w 已被访问过,然后把 w 当做下一个 v ,查找 w 的第一个邻接点,继续执行深度遍历(这是个递归的过程)
      • 如果 w 已经被访问过,则跳过此节点
    • 如果 w 不存在,说明 v 真的没有下一个邻接点了,已经到头了,我们回到节点 v ,将从v的下一个结点继续查找
  • 经过如上步骤,图中可能还有其他顶点未被访问,继续从下一个顶点执行如上操作

如何找到当前顶点的下一个邻接点?
假设当前正在遍历的顶点索引为 i ,顶点 i 的边信息存储在 edges[][]数组中第 i 行
假设顶点 i 的当前遍历到的邻接点索引为 j ,即已经遍历到了 第 edges[i][j]处,需要从 edges[i][j]之后去找顶点 i 的下一个邻接点索引
在这里插入图片描述
举例说明:

访问顶点 A 后输出 A ,A 的第一个邻接点是 B ,B 未被访问过,我们访问顶点 B
在这里插入图片描述
访问顶点 B 后输出 A–> B
B 的第一个邻接点 A 已经被访问过了
B 的第二个邻接点 C 还未被访问过,我们访问节点 C
在这里插入图片描述
访问节点 C
C 的第一个邻接点是 A ,然而 A 已经访问过了
C 的下一个邻接点是 B ,然而 B 也已经访问过了
除此之外,C 再也没有其他邻接点
我们回到顶点 B ,访问节点 B 的下一个邻接点:顶点 D
在这里插入图片描述
访问顶点 D 后输出 A --> B --> C --> D ,D 没有邻接节点,所以又返回到顶点 B ,访问顶点 B 的下一个邻接点:顶点 E
访问顶点 E 后输出 A --> B --> C --> D --> E,E 没有邻接节点,所以又返回到顶点 B
B 的所有邻接点都访问过了,返回到顶点 A
以上所有操作仅是一轮,还需要再对图中其他顶点进行以上操作
在这里插入图片描述
总结:

  • 假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值