java chars_Java getChars() 方法

Java getChars() 方法

getChars() 方法将字符从字符串复制到目标字符数组。

语法

public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)

参数

srcBegin -- 字符串中要复制的第一个字符的索引。

srcEnd -- 字符串中要复制的最后一个字符之后的索引。

dst -- 目标数组。

dstBegin -- 目标数组中的起始偏移量。

返回值

没有返回值,但会抛出 IndexOutOfBoundsException 异常。

实例

public class Test {

public static void main(String args[]) {

String Str1 = new String("http://rumenz.com");

char[] Str2 = new char[6];

try {

Str1.getChars(4, 10, Str2, 0);

System.out.print("拷贝的字符串为:" );

System.out.println(Str2 );

} catch( Exception ex) {

System.out.println("触发异常...");

}

}

}

以上程序执行结果为:

拷贝的字符串为:rumenz

原文链接:https://rumenz.com/java/java_string_getchars.html

class CardPredictor: def __del__(self): self.save_traindata() def train_svm(self): # 识别英文字母和数字 self.model = SVM(C=1, gamma=0.5) # 识别中文 self.modelchinese = SVM(C=1, gamma=0.5) if os.path.exists("svm.dat"): self.model.load("svm.dat") else: chars_train = [] chars_label = [] for root, dirs, files in os.walk("train\\chars2"): if len(os.path.basename(root)) > 1: continue root_int = ord(os.path.basename(root)) for filename in files: filepath = os.path.join(root, filename) digit_img = cv2.imread(filepath) digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY) chars_train.append(digit_img) chars_label.append(root_int) chars_train = list(map(deskew, chars_train)) chars_train = preprocess_hog(chars_train) chars_label = np.array(chars_label) self.model.train(chars_train, chars_label) if os.path.exists("svmchinese.dat"): self.modelchinese.load("svmchinese.dat") else: chars_train = [] chars_label = [] for root, dirs, files in os.walk("train\\charsChinese"): if not os.path.basename(root).startswith("zh_"): continue pinyin = os.path.basename(root) index = provinces.index(pinyin) + PROVINCE_START + 1 # 1是拼音对应的汉字 for filename in files: filepath = os.path.join(root, filename) digit_img = cv2.imread(filepath) digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY) chars_train.append(digit_img) chars_label.append(index) chars_train = list(map(deskew, chars_train)) chars_train = preprocess_hog(chars_train) chars_label = np.array(chars_label) self.modelchinese.train(chars_train, chars_label)
05-15
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值