动态规划——计算二项式系数问题

这篇博客探讨了如何使用动态规划计算二项式系数C(n, k),介绍了问题描述、算法分析设计,并提供了源代码及运行结果,揭示了二项式系数的递推关系和性质。" 42124473,786705,理解OpenCV2.4.9中的SIFT算法,"['计算机视觉', '特征提取', '图像处理', 'OpenCV库', '算法实现']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算二项式系数问题

二项式是数学中常用的数学式子,动态规划可以很好的解决求解二项式的结果。

问题描述

已知在n个元素集合中挑选出k( 0 ≤ k ≤ n 0\leq k \leq n 0kn)个元素组合的数量,记作 C ( n , k ) C(n, k) C(n,k),或 C n k C_n^k Cnk

已知二项式系数有如下性质、关系:

  • ( a + b ) n = C n 0 a n + C n 1 a n − 1 b + . . . + C n i a n − i b i + . . . + C n n b n (a + b)^n = C_n^0a^n+C_n^1a^{n-1}b+...+C_n^ia^{n-i}b^i+...+C_n^nb^n (a+b)n=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值