有向加权图(DAG)最长路径问题
有向加权图最长路径问题是图论中一个重要的问题,可以通过动态规划的思想进行解决。
问题描述
给定一个有向加权无环图G,从G中找出无入度的顶点s,求从s出发到其他顶点的最长路径。

下文源代码运行结果参照此图
设计分析
首先,对于一般的图来说,求最长路径不像求最短路径那样简单,最长路径没有最优子结构。实际上,最长路径属于NP-hard问题。其次,图不能存在环路,如果图中存在有环路,我们可以很容易想到最长路径就变成无穷大了。因此,对于DAG来说,最长路径就存在解了。
如何利用动态规划解决该问题呢?
我们将上图进行一定的变形:

此时我们就可以清楚地看出最长路径。
设:dilg(V)dilg(V)dilg(V)表示以点V结尾的最长路径:
dilg(V)=max(u,v)∈E(dilg(u)+w(u,v))dilg(V)=max_{(u,v)\in E}(dilg(u)+w(u,v))dilg(V)=max(u,v)∈E(dilg(u)+w(u,v));
对于D点来说:
dilg(D)=max(dilg(B)+1,dilg(C)+3)dilg(D)=max(dilg(B)+1,dilg(C)+3)

本文介绍了如何使用动态规划解决有向加权无环图(DAG)中最长路径的问题。首先解释了问题背景和设计分析,说明最长路径在DAG中存在的条件。接着,通过变形图展示最长路径的确定方式,并提出动态规划的解决策略,将问题逐步分解为更小的部分。最后,给出了源代码和运行结果。
最低0.47元/天 解锁文章
2339

被折叠的 条评论
为什么被折叠?



