pytorch:反向传播前手动将梯度清零的原因

首先:清零代码:optmizer.zero_grad()

optimizer.zero_grad()             ## 梯度清零
preds = model(inputs)             ## inference
loss = criterion(preds, targets)  ## 求解loss
loss.backward()                   ## 反向传播求解梯度
optimizer.step()                  ## 更新权重参数

由于pytorch的动态计算图,使用loss.backward()和optimizer.step()进行梯度下降更新参数时,梯度并不会自动清零,而且两个操作是独立操作。其中。backward()反向传播求解梯度。step()更新权重参数。

说明pytorch每一步都是独立功能的操作,因此需要梯度清零。如果不进行optimizer.zero_grad()这一步操作,backward()时就会累加梯度。

因此pytorch将此步骤独立出来,可以更加灵活

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch中,定义反向传播函数通常是通过创建一个自定义的PyTorch模型类来实现的。以下是一个简单的示例: ```python import torch import torch.nn as nn class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() # 定义模型的层和参数 self.fc1 = nn.Linear(10, 5) self.fc2 = nn.Linear(5, 1) def forward(self, x): # 定义传播的计算过程 x = self.fc1(x) x = torch.relu(x) x = self.fc2(x) return x model = MyModel() # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # 传播 inputs = torch.randn(1, 10) outputs = model(inputs) # 反向传播 loss = criterion(outputs, torch.randn(1, 1)) optimizer.zero_grad() loss.backward() optimizer.step() ``` 在上述示例中,我们首先定义了一个自定义的模型类`MyModel`,其中包含了两个全连接层`fc1`和`fc2`。在`forward`方法中,我们定义了传播的计算过程。然后,我们创建了一个模型实例`model`。 接下来,我们定义了损失函数(这里使用均方误差损失函数)和优化器(这里使用随机梯度下降优化器)。然后,我们通过将输入数据传递给模型的`forward`方法来进行传播,并计算输出。 在反向传播部分,我们首先计算了损失值,然后使用`optimizer.zero_grad()`将模型参数的梯度零,接着调用`loss.backward()`进行反向传播计算梯度,最后使用`optimizer.step()`更新模型参数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值