深度学习-starting

深度学习的发展趋势

回顾一下deep learning的历史:

  • 1958: Perceptron (linear model)
  • 1969: Perceptron has limitation
  • 1980s: Multi-layer perceptron
    • Do not have significant difference from DNN today
  • 1986: Backpropagation
    • Usually more than 3 hidden layers is not helpful
  • 1989: 1 hidden layer is “good enough”, why deep?
  • 2006: RBM initialization (breakthrough)
  • 2009: GPU 2011: Start to be popular in speech recognition
  • 2012: win ILSVRC image competition

感知机(Perceptron)非常像我们的逻辑回归(Logistics Regression)只不过是没有sigmoid激活函数。09年的GPU的发展是很关键的,使用GPU矩阵运算节省了很多的时间。

深度学习的三个步骤

Step1:神经网络(Neural network)
Step2:模型评估(Goodness of function)
Step3:选择最优函数(Pick best function)
那对于深度学习的Step1就是神经网络(Neural Network)

Step1:神经网络

神经网络(Neural network)里面的节点,类似我们的神经元。生物神经元如下图所示:
在这里插入图片描述
深度学习中的神经元是借鉴了生物神经元的结构,感知机就是深度学习中的神经元对应的结构。

神经网络也可以有很多不同的连接方式,这样就会产生不同的结构(structure)在这个神经网络里面,我们有很多逻辑回归函数,其中每个逻辑回归都有自己的权重和自己的偏差,这些权重和偏差就是参数。 那这些神经元都是通过什么方式连接的呢?其实连接方式都是你手动去设计的。

感知机(Perceptron),又称神经元(Neuron,对生物神经元进行了模仿)是神 经网络(深度学习)的起源算法,1958年由康奈尔大学心理学教授弗兰克·罗森布拉 特(Frank Rosenblatt)提出,它可以接收多个输入信号,产生一个输出信号
在这里插入图片描述
神经元更通用的图形表示和表达式。
感知机模型如下图所示:

在这里插入图片描述
感知机的作用:作为分类器、回归器,实现自我学习。 实现逻辑运算,包括逻辑和,逻辑与,组成神经网络。

神经网络也可以有很多不同的连接方式,这样就会产生不同的结构(structure)在这个神经网络里面,我们有很多逻辑回归函数,其中每个逻辑回归都有自己的权重和自己的偏差,这些权重和偏差就是参数。 那这些神经元都是通过什么方式连接的呢?其实连接方式都是你手动去设计的。

完全连接神经网络
概念:前馈(feedforward)也可以称为前向,从信号流向来理解就是输入信号进入网络后,信号流动是单向的,即信号从前一层流向后一层,一直到输出层,其中任意两层之间的连接并没有反馈(feedback),亦即信号没有从后一层又返回到前一层。
在这里插入图片描述

  • 当已知权重和偏差时输入(1,-1)​(1,−1)​的结果
  • 当已知权重和偏差时输入(-1,0)(−1,0)的结果
    在这里插入图片描述
    上图是输入为1和-1的时候经过一系列复杂的运算得到的结果
    在这里插入图片描述
    当输入0和0时,则得到0.51和0.85,所以一个神经网络如果权重和偏差都知道的话就可以看成一个函数,他的输入是一个向量,对应的输出也是一个向量。不论是做回归模型(linear model)还是逻辑回归(logistics regression)都是定义了一个函数集(function set)。我们可以给上面的结构的参数设置为不同的数,就是不同的函数(function)。这些可能的函数(function)结合起来就是一个函数集(function set)。这个时候你的函数集(function set)是比较大的,是以前的回归模型(linear model)等没有办法包含的函数(function),所以说深度学习(Deep Learning)能表达出以前所不能表达的情况。

我们通过另一种方式显示这个函数集:

全链接和前馈的理解:

  • 输入层(Input Layer):1层
  • 隐藏层(Hidden Layer):N层
  • 输出层(Output Layer):1层
    在这里插入图片描述
    为什么叫全链接呢?
  • 因为layer1与layer2之间两两都有连接,所以叫做Fully Connect;
    为什么叫前馈呢?
  • 因为现在传递的方向是由后往前传,所以叫做Feedforward。

那什么叫做Deep呢?Deep = Many hidden layer。那到底可以有几层呢?这个就很难说了,以下是一些比较深的神经网络的例子
在这里插入图片描述
在这里插入图片描述

  • 2012 AlexNet:8层
  • 2014 VGG:19层
  • 2014 GoogleNet:22层
  • 2015 ResidualNet:152层
  • 101 Taipei:101层

随着层数变多,错误率降低,随之运算量增大,通常都是超过亿万级的计算。对于这样复杂的结构,我们一定不会一个一个的计算,对于亿万级的计算,使用loop循环效率很低。

这里我们就引入矩阵计算(Matrix Operation)能使得我们的运算的速度以及效率高很多:

Step2: 模型评估

损失示例
在这里插入图片描述

对于模型的评估,我们一般采用损失函数来反应模型的好差,所以对于神经网络来说,我们采用交叉熵(cross entropy)函数来对y和 y ^ ​ \hat{y}​ y^的损失进行计算,接下来我们就是调整参数,让交叉熵越小越好。
在这里插入图片描述
对于损失,我们不单单要计算一笔数据的,而是要计算整体所有训练数据的损失,然后把所有的训练数据的损失都加起来,得到一个总体损失L。接下来就是在function set里面找到一组函数能最小化这个总体损失L,或者是找一组神经网络的参数θ,来最小化总体损失L.

Step3:选择最优函数

如何找到最优的函数和最好的一组参数呢,我们用的就是梯度下降。
在这里插入图片描述

在这里插入图片描述
具体流程:θ是一组包含权重和偏差的参数集合,随机找一个初试值,接下来计算一下每个参数对应偏微分,得到的一个偏微分的集合∇L就是梯度,有了这些偏微分,我们就可以不断更新梯度得到新的参数,这样不断反复进行,就能得到一组最好的参数使得损失函数的值最小

反向传播
在这里插入图片描述
在神经网络中计算损失最好的方法就是反向传播,我们可以用很多框架来进行计算损失,比如说TensorFlow,theano,Pytorch等等。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值