深度学习-图解卷积运算

卷积神经网络(CNN)通过卷积层和池化层改进了全连接网络,广泛应用于图像识别等领域。CNN的基础包括单通道二维卷积运算、带偏置的卷积、带填充的卷积以及多通道卷积计算。输出矩阵大小的计算涉及到输入大小、滤波器大小、填充和步幅。在图像识别模型如AlexNet、VGGNet等中,CNN是核心组成部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积神经网络(Convolutional Neural Network,CNN)针对全连接网络 的局限做出了修正,加入了卷积层(Convolution层)和池化层(Pooling 知 层)。

CNN被广泛应用于图像识别、语音识别等各种场合,在图像识别的比赛中, 基于深度学习的方法几乎都以CNN为基础(比如,AlexNet、VGGNet、 Google Inception Net及微软的ResNet等)上。近几年深度学习大放异彩, CNN功不可没。

单通道,二维卷积运算示例:

在这里插入图片描述
如上图所示,红色的方框圈中的数字和卷积核乘积再相加得到输出数据。

单通道,二维,带偏置的卷积示例:

在这里插入图片描述
带偏置的计算实在上述乘积运算之后加上偏置。

带填充的单通道,二维卷积运算示例:

在这里插入图片描述

输出矩阵的大小计算

卷积运算输出矩阵大小计算公式
在这里插入图片描述
其中,输入大小为(H, W),滤波器大小为(FH, FW),输出大小为(OH, OW),填 充为P,步幅为S。例如:输入大小(28,31);填充2;步幅3;滤波器大小 (5,5),则输出矩阵大小为:
在这里插入图片描述

多通道卷积计算

多通道卷积会按通道进行输入数据和滤波器的卷积运算,并将结果相加, 从而得到输出
在这里插入图片描述
多通道、多卷积核卷积计算:

  • 每个通道先与第一组卷积核执行卷 积,然后多通道结果叠加,产生一 个输出
  • 每个通道与下一组卷积核执行卷积, 产生另一个输出
  • 有多少组卷积核,就有多少个通道 输出
    在这里插入图片描述
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值