4. MapReduce基本原理

我们前面提了一嘴MapReduce。说它是一个采用了分治思想的分布式计算框架,本节我们就进一步细致讨论一下MapReduce。

大数据背景下,数据量巨大,这点没有问题。数据巨大带来的问题就是计算耗时、传输耗时。

  • 计算耗时无法避免,因为那么大的数据就是需要进行计算的。我们只能想办法提升算力或者优化算法来提升计算的速度。
  • 传输耗时却可以避免,或者说优化。MapReduce中采用了计算向数据偏移的策略,尽量维持数据不动,在本地计算,这叫数据本地性。但是很多场合我们无法避免移动数据,但是我们也应该尽量选择靠近的节点。

第4.1节 MapReduce的并行化计算模型

在这里插入图片描述

看图说话,我们基于一个大数据领域的“HelloWorld“,”wordcount",结合上图中的MapReduce并行计算模型来讲解MapReduce的计算过程。

首先,我们假设我们拥有一篇初始的文章,我们需要统计文章中的所有的词语出现的个数。以一下这个小短文为例:

This distribution includes cryptographic software.  The country in which you currently reside 
may have restrictions on the import, possession, use, and/or re-export to another country, 
of encryption software. BEFORE using any encryption software, please check your country's laws, 
regulations and policies concerning the import, possession, or use, and re-export of encryption 
software, to see if this is permitted. See <http://www.wassenaar.org/> for more information.

细心的人已经发现了,这个是Hadoop安装包的README.txt中的一部分内容。

要统计这篇文章的词语方法很简单,读取文章,顺次统计每个词语出现的个数即可。如果只有一个人,就一个人统计,如果有好几个人,就好几个人每个人分几行,先自己统计,然后将每个人的统计结果合并就可以了。

哎哎哎!打住!发现了没有,这就是分治啊!把一个活分给好几个人干。 这也是MapReduce的想法,让原本需要一台机器做的事,分给好几个人做,这样不就快了嘛!

在MapReduce中,从数据输入到得到输出,整个流程所做的事情称为一个 作业

第4.2节 MapReduce的任务流程

我们按照图中的流程,梳理一下MapReduce的任务流程。

  • 初始时,是上述的一个文本。MapReduce接收到作业输入后,会先进行数据拆分。
  • 数据拆分完成之后,会有多个 小文本 数据,每个小文本都会作为一个Map任务的输入。这样一个大的MapReduce作业,会被分解为多个小的Map任务。
  • Combiner会处理Map生成的数据,需要注意的是,此时Map生产的仅仅是中间结果。Combiner是一个可选的组件,用户不设置,他就不存在。
  • 之后,数据会到达Partitioner,Partitioner组件会将中间数据按照哈希函数的对应规则,将中间结果分配到对应的Reducer所在节点上。
  • Reducer会处理中间数据,得到最终的结果。

这就是,一个完整的MapReduce作业的生老病死的概括,其真实的流程自然远不止此,我们会在后面娓娓道来。

先让我们仔仔细细地了解一下上述过程的每一个组件。

一、扯一扯Map

有了上述的内容,我们可以进行下一步了。

按照我们说的,我们应该将这个小短文分成几个部分。也就是图中的数据划分。

(1)首先进行数据划分

当我们开启一个MapReduce程序,一般传入的输入都是一个体积巨大的数据。MapReduce接收到数据后,需要对数据进行划分。通俗来讲,就是我们前文说的,我们该如果将一个小短文划分成多行,分配个多个人进行统计。

MapReduce中有一个InputFormat类,它会完成如下三个任务:

  • 验证作业数据的输入形式和格式
  • 将输入数据分割为若干个逻辑意义上的InputSplit,其中每一个InputSplit都将单独作为Map任务的输入。也就是说,InputSplit的个数,代表了Map任务的个数。需要注意,这里并没有做实际切分,仅仅是将数据进行逻辑上的切分。
  • 提供一个RecordReader,用于将Map的输入转换为若干个记录。虽然MapReduce作业可以接受很多种格式的数据,但是Map任务接收的任务其实是键值对类型的数据,因此需要将初始的输入数据转化为键值对。RecordReader对象会从数据分片中读取出数据记录,然后转化为 Key-Value 键值对,逐个输入到Map中进行处理。

问题在于,这个InputFormat类该如何进行划分呢?在FileInputFormat类中,会有一个getSplits函数,这个函数所做的事情其实就是进行数据切分的过程。我们稍微看一下这个函数:

public List<InputSplit> getSplits(JobContext job) throws IOException {
    StopWatch sw = new StopWatch().start();
    long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
    long maxSize = getMaxSplitSize(job);
    //...
    for (FileStatus file: files) {
        if (isSplitable(job, path)) {
          long blockSize = file.getBlockSize();
          long splitSize = computeSplitSize(blockSize, minSize, maxSize);
            //...
        }
        //...
    }
    //...
}

protected long computeSplitSize(long blockSize, long minSize,
                                long maxSize) {
    return Math.max(minSize, Math.min(maxSize, blockSize));
}
  • minSize :每个split的最小值,默认为1.getFormatMinSplitSize()为代码中写死,固定返回1,除非修改了hadoop的源代码.getMinSplitSize(job)取决于参数mapreduce.input.fileinputformat.split.minsize,如果没有设置该参数,返回1.故minSize默认为1.
  • maxSize:每个split的最大值,如果设置了mapreduce.input.fileinputformat.split.maxsize,则为该值,否则为Long的最大值。
  • blockSize :默认为HDFS设置的文件存储BLOCK大小。注意:该值并不一定是唯一固定不变的。HDFS上不同的文件该值可能不同。故将文件划分成split的时候,对于每个不同的文件,需要获取该文件的blocksize。
  • splitSize :根据公式,默认为blockSize 。

从上述代码中可以看到,这个InputSize在 [minSize, maxSize] 之间。

(2)这样,我们可以理一理划分逻辑
  • 1)遍历输入目录中的每个文件,拿到该文件
  • 2)计算文件长度,A:如果文件长度为0,如果mapred.split.zero.file.skip=true,则不划分split ; 如果mapred.split.zero.file.skip为false,生成一个length=0的split .B:如果长度不为0,跳到步骤3
  • 3)判断该文件是否支持split :如果支持,跳到步骤4;如果不支持,该文件不切分,生成1个split,split的length等于文件长度。
  • 4)根据当前文件,计算splitSize
  • 5)判断剩余待切分文件大小/splitsize是否大于SPLIT_SLOP(该值为1.1,代码中写死了) 如果true,切分成一个split,待切分文件大小更新为当前值-splitsize ,再次切分。生成的split的length等于splitsize; 如果false 将剩余的切到一个split里,生成的split length等于剩余待切分的文件大小。之所以需要判断剩余待切分文件大小/splitsize,主要是为了避免过多的小的split。比如文件中有100个109M大小的文件,如果splitSize=100M,如果不判断剩余待切分文件大小/splitsize,将会生成200个split,其中100个split的size为100M,而其中100个只有9M,存在100个过小的split。MapReduce首选的是处理大文件,过多的小split会影响性能。

划分好Split之后,这些数据进入Map任务,按照用户设计处理逻辑进行处理。Map可以由用户定义设计处理逻辑。

二、聊一聊Combiner

Combiner组件并不是一个必须部分,用户可以按照实际的需求灵活的添加。Combiner组件的主要作用是 减少网络传输负载,优化网络数据传输优化

当我们Map任务处理完成之后,上述的文本会变成一个一个的 Key-Value 对。

(This, 1)
(distribution, 1)
...

在没有Combiner组件前提下,这些键值对会直接传输到Reducer端,进行最后的统计工作。但是这一步是可以优化的,因为Map端仅仅是将每行的词拆分了,但是其实可以再做一步统计的。

例如,我们假设在Map任务A这里出现了两次 (This, 1),我们可以做一次统计,将这个Map任务上的This做一次统计,生成(This, 2)。在大数据场合,千万个这样的相同词的合并会显著降低网络负载。

但是并不是所有的场合都适用Combiner,这个组件是可有可无的,用户需要按照自己的需求灵活决定

因为Combiner可以存在,也可以不存在,所有,我们设计Combiner时,要保证Combiner的key-value和Map的key-value一致 。这也意味着,若你设计的Combiner改变了原先Map的键值对设计,那么你的Combiner设计就是不合法的。

三、瞅一瞅Partitioner

为了保证所有主键相同的键值对会传输到同一个Reducer节点,以便Reducer节点可以在不访问其他Reducer节点的情况下就可以计算粗最终的结果,我们需要对来自Map(如果有Combiner,就是Combiner之后的结果)中间键值对进行分区处理,Partitioner主要就是进行分区处理的。

Partitioner 默认的分发规则

根据 keyhashcode%reduce task 数来分发,所以:如果要按照我们自己的需求进行分组,则需要改写数据分发(分区)组件 Partitioner

  • Partition 的 key value, 就是Mapper输出的key value

    public interface Partitioner<K2, V2> extends JobConfigurable {
      
      /** 
       * Get the paritition number for a given key (hence record) given the total 
       * number of partitions i.e. number of reduce-tasks for the job.
       *   
       * <p>Typically a hash function on a all or a subset of the key.</p>
       *
       * @param key 用来partition的key值。
       * @param value 键值对的值。
       * @param numPartitions 分区数目。
       * @return the partition number for the <code>key</code>.
       */
      int getPartition(K2 key, V2 value, int numPartitions);
    }
    

    输入是Map的结果对<key, value>和Reducer的数目,输出则是分配的Reducer(整数编号)就是指定Mappr输出的键值对到哪一个reducer上去。系统缺省的Partitioner是HashPartitioner,它以key的Hash值对Reducer的数目取模,得到对应的Reducer。这样保证如果有相同的key值,肯定被分配到同一个reducre上。如果有N个reducer,编号就为0,1,2,3……(N-1)

  • MapReduce 中会将 map 输出的 kv 对,按照相同 key 分组,然后分发给不同的 reducetask 默认的分发规则为:根据 key 的 hashcode%reduce task 数来分发,所以:如果要按照我们自 己的需求进行分组,则需要改写数据分发(分组)组件 Partitioner, 自定义一个 CustomPartitioner 继承抽象类:Partitioner

  • 因此, Partitioner 的执行时机, 是在Map输出 key-value 对之后

四、MapReduce中的Sort

MapReduce中的很多流程都涉及到了排序,我们会在后面详细说明。

从整个MapReduce的程序执行来看,整个过程涉及到了 快排、归并排序、堆排 三种排序方法。

五、遛一遛Reduce

Reduce会处理上游(Map,也可能有Combiner)的中间结果。

需要注意的是,Map到Reduce整个过程中,键值的变化是不一样的

  1. 初始是文本内容,会被RecordReader处理为键值对 <key-value>
  2. 经过Map(也可能有Combiner)后,仍然是键值对形式 <key-value>
  3. 经过Partition,到达Reduce的结果是 key - list(value) 形式。所以在Reduce处理的value其实一个整体。

Reduce会把所有的结果处理完成,输出到对应的输出路径。

弊端

MapReduce的Reduce处理结果最后都是需要落盘的,当一个project中有多个MapReduce作业(Job)时,无法有效利用内存。

如果你也对大数据感兴趣,欢迎关注我的公众号 《大数据面试学习指北》
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值