计算固定时间间隔内的平均数

本文介绍如何在Python中,以B列时间数据为基准,每隔1分钟计算D列数值的平均值。首先展示原始数据,然后将非时间索引调整为B列时间,接着使用resample方法按1分钟时间窗口进行平均计算。如果需要,该方法同样适用于30秒或其他时间间隔的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

想要计算D列的平均值,有个条件是以B列中的时间为轴,每隔1min计算一次。

代码如下
 

import pandas as pd

df=pd.read_excel("C:/Users/Desktop/average/LAST_mac_plot12.xlsx",names=['a','b','c','d'])
print(df.head())

看一下前5行数据:

可以看到数据的索引并不是时间,现在要将索引改为b列的时间。

DF=df.set_index(df['b'])
DF.index=pd.to_datetime(DF.index,format='%H:%M:%S')
print(DF.head())

再来看一下结果:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值