python平滑拟合数据lowess和Savitzky-Golay完整代码

本文提供了Python中实现数据平滑的Lowess和Savitzky-Golay滤波器的完整代码示例。通过这两种方法,可以有效地对噪声数据进行平滑处理,提取出数据的主要趋势。
摘要由CSDN通过智能技术生成

完整代码如下:

import numpy as np 
import pandas as pd 
from pandas import Series, DataFrame
import matplotlib.pyplot as plt
#读取文件数据
df = pd.read_csv('averageSpeed23.csv',names=['t','g'])
Y0 = df['t']
X0 = df['g']
x=np.array(Y0)
y=np.array(X0)	



# statsmodels.api
import statsmodels.api as sm 
lowess=sm.nonparametric.lowess
z=lowess(y,x,frac=0.02)
plt.plot(x,y)
plt.title('lowess')
plt.plot(z[:,0],z[:,1],color='r',lw=1)

# Savitzky-Golay filter 平滑 
from scipy.signal import savgol_filter
zs=savgol_filter(y, 9, 3) # window size 51, polynomial order 3
plt.figure()
plt.plot(x,y)
plt.title('Savitzky-Golay filter')
plt.plot(x,zs,color='r',lw=1)
plt.show()

结果如下:

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值