一、复习目标
1.理解并掌握旋转的性质.
2. 能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.
3. 理解中心对称的有关概念及其基本性质,了解中心对称与旋转的关系. 理解中心对称图形的概念及其基本性质,了解平行四边形、圆是中心对称图形.
4. 会判断一个图形是否是中心对称图形,能找出中心对称图形的对称中心.
5. 理解两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P′(-x,-y).能画出已知图形关于原点对称的图形.
重点:旋转的性质、中心对称性质的应用
难点:旋转性质的应用.

二、新课导入
专题一、旋转的性质
例1(2020•大连)如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是( )
A.50° B.70° C.110° D.120°

例2 (2020•眉山)如图,在Rt△ABC中,∠BAC=90°,AB=2.将△ABC绕点A按顺时针方向旋转至△AB1C1的位置,点B1恰好落在边BC的中点处,则CC1的长为 .

专题二、中心对称图形
例3.下面四个标志是中心对称图形的是( )

例4 如图,下列图形既是中心对称图形又是轴对称图形的是( )

专题三 关于原点对称
例5 已知点A(x,y-4)与点B(1-y,2x)关于原点对称,求xy的值;
专题四、旋转与点的坐标
例6 将含有30°角的直角三角板如图放置在平面直角坐标系中,OB在x轴上,将三角板绕原点O顺时针旋转75°,若OA=4,则点A的对应点A′的坐标为____________.

专题五、添辅助线解决与旋转有关的问题
例7.等边三角形内有一点O,已知OA=4,OB=3,OC=5,求∠AOB的度数.

二、回顾与反思
通过以上内容,你还觉得自己在哪些方面存在疑惑,你掌握了哪些内容?

三、课堂检测(每小题20分共100分,时间5-8分钟)


四、每日一题(提高题)

