混沌系统在图像加密中的应用(四维超混沌Lorenz系统)

混沌系统在图像加密中的应用(四维超混沌Lorenz系统)

前言

本节内容将学习四维连续混沌系统,根据前面学习的内容对其离散化,并绘制相图。

一、超混沌Lorenz系统

超混沌Lorenz系统是对经典Lorenz系统的扩展,它是由爱德华·诺伦·洛伦兹(Edward Norton Lorenz)发展而来的一种非线性动力学系统。爱德华·洛伦兹是一位美国气象学家,于1963年提出了经典Lorenz系统,用于描述大气运动中的热对流现象。经典Lorenz系统是一种简化的三维模型,由三个非线性常微分方程组成。然而,洛伦兹后来意识到,通过对经典Lorenz系统进行一些修改,可以得到更加复杂和混沌的动力学行为。于是,他引入了一些非线性项和额外的驱动力,从而得到了超混沌Lorenz系统。

超混沌Lorenz系统具有比经典系统更加复杂的行为,包括多个分枝和不稳定的周期轨道。这些分支指的是系统在某些条件下可以展示出多个不同的行为模式。这种系统在控制理论、混沌密码学和通信领域等具有重要的应用。

超混沌Lorenz系统对于理解混沌现象的本质和实际应用具有重要的意义。通过研究和分析该系统,我们可以深入了解非线性系统的行为特性,并探索混沌现象背后的动力学机制。

超混沌Lorenz系统的表达式为
在这里插入图片描述
其中,a=10, b=8/3, c=28, -1.52 ≤ r ≤ -0.06 时, 该系统处于超混沌态。当r = -1时,上式的4个Lyapunov指数依次为: λ1 =0.3381, λ2:= 0.1586, λ3=0, λ4=-15.1752。

二、超混沌Lorenz系统离散化

根据前面的内容,我们选取四阶龙格-库塔法(Fourth-Order Runge-Kutta method)对超混沌Lorenz系统进行离散化。读者可自行绘出其余相图和时序图
在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt

def lorenz(t, x, a, b, c, r):
    """超混沌 Lorenz 系统的微分方程"""
    dx = a * (x[1] - x[0]) + x[3]
    dy = x[0] * c - x[1] - x[0] * x[2
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Owl City、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值