python图像处理 ——图像锐化
前言
由于收集图像数据的器件或传输图像的通道存在一些质量缺陷,或者受其他外界因素的影响,使得图像存在模糊和有噪声的情况,从而影响到图像识别工作的开展。一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息主要集中在其高频部分。这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。
一、原理
图像锐化是指增强图像的边缘和细节信息,使图像看起来更加清晰和生动。其原理主要是减小图像中像素值相对差异较小的区域,增加像素值相对差异较大的区域。一般而言,锐化处理的方法主要分为两类:增强高频信息和抑制低频信息。
增强高频信息的方法主要是通过使用高通滤波器来实现,例如使用Sobel、Laplacian等滤波器。这些滤波器可以增强图像中的高频信息,即边缘和细节信息,使其更加明显和突出。
抑制低频信息的方法主要是通过使用平滑滤波器来实现,例如使用均值、高斯等滤波器。这些滤波器可以减小图像中的低频信息,使其更加平滑和模糊,从而突出高频信息。
二、 空间域锐化滤波
图像模糊通过平滑(加权平均)来实现,类似于积分运算。图像锐化则通过微分运算(有限差分)实现,使用一阶微分或二阶微分都可以得到图像灰度的变化值。
图像锐化的目的是增强图像的灰度跳变部分,使模糊的图像变得清晰。图像锐化也称为高通滤波,通过和增强高频,衰减和抑制低频。图像锐化常用于电子印刷、医学成像和工业检测。
恒定灰度区域,一阶导数为零,二阶导数为零;
1.灰度台阶或斜坡起点区域,一阶导数非零,,二阶导数非零;
2.灰度斜坡区域,一阶导数非零,二阶导数为零。
3.图像梯度提取方法简单直接,能够有效的描述图像的原始状态,因此发展出多种图像梯度算子:Roberts、Prewitt、Sobel、Laplacian、Scharr。
1.拉普拉斯算子(Laplacian)
Laplacian算子是一种用于图像处理和计算机视觉的数学运算符。它是二阶导数算子的一种,可以用于检测图像中的边缘和纹理等特征。在离散形式下,Laplacian算子可以表示为:
Δ f ( x , y ) = f ( x − 1 , y ) + f ( x + 1 , y ) + f ( x , y − 1 ) + f ( x , y + 1 ) − 4 f ( x , y ) \Delta f(x,y) = f(x-1,y) + f(x+1,y) + f(x,y-1) + f(x,y+1) - 4f(x,y) Δf(x,y)=