一个简单的例子开启Spark机器学习

本文从一个简单的逻辑回归(LR)分类模型入手,介绍如何在Spark环境下处理数据并应用算法。首先,你需要了解Scala语法,并在本地搭建Spark和Hadoop环境。接着,将数据转化为LabeledPoint格式,参考Spark官方指南。然后,利用Spark MLlib库执行逻辑回归。整个操作将在spark-shell中进行。
摘要由CSDN通过智能技术生成

一、在看这个例子之前你需要:

1)稍稍懂一些Scala的语法

2)本地机器上有spark环境,最好安装了Hadoop


二、一个简单的LR分类模型

步骤1:处理数据成为LabeledPoint格式,参考:spark官网ml数据格式一个简单明了的spark数据处理网上书籍

步骤2:调用Spark工具包执行算法,参考:spark官网逻辑回归实现

以下演示环境为spark-shell

scala> sc//spark-shell会默认创建一个sc变量,即SparkContext实例 
res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@b5de9ac
//读取数据
scala> val rdd1 = sc.textFile("hdfs://bipcluster/user/platform_user/jiping.liu/dataSpark.csv")
rdd1: org.apach
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值