【TensorFlow】TensorFlow 的排序学习库(TF-Ranking)

TF-Ranking 是一个基于 TensorFlow 平台,用于解决大规模的排名问题的开源库。 它基于通常称为“排序学习/ Learning to Rank” (LTR) 的底层技术。 这种技术被广泛地应用于如搜索和推荐。 TF-Ranking 是第一个用于 LTR 问题的开源深度学习库,并已被工业界广泛采用。接下来介绍一下该库的主要功能和一些小例子。

行业采用情况:

  • 英领
  • Grubhub
  • 知乎
  • 爱奇艺

排序学习

常用场景如下:
在这里插入图片描述

TF-Ranking架构

在这里插入图片描述
在这里插入图片描述

TF-Ranking主要模块

  • 损失函数:排序损失是排序学习的核心技术
  • 指标:排序效果应以排序指标作为最佳评估标准
  • 流水线:流水线易于使用,可用来构建和训练排序学习模型

损失函数:可被归为3中方法

1)单文档法
  • 将各文档分开考虑
  • 部分示例包括:有序回归、分类、渐进梯度回归树(GBRT)
    在这里插入图片描述
2)文档对法
  • 考虑文档对:考虑文档A是不是比文档B更相关
  • 部分示例包括:RankNet、RankSVM、RankBoost
    在这里插入图片描述
3)文档列表法
  • 考虑整个列表的排序
  • 部分示例把包括:LambdaMART、ApproxNDCG、List{Net, MLE}
    在这里插入图片描述
支持的损失函数示例

在这里插入图片描述
在这里插入图片描述

支持的排序指标示例

在这里插入图片描述
在这里插入图片描述

TF-Ranking流水线

用户只需要定义绿色模块:
在这里插入图片描述
实现上述步骤的代码:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

椰卤工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值