TensorFlow推荐系统(二)

本文深入解析TensorFlow推荐系统的排序模型,包括数据准备、模型搭建和模型评估。通过词嵌入和全连接层构建模型,以用户喜好为依据对电影进行排名。
摘要由CSDN通过智能技术生成

1 前言

读过 TensorFlow推荐系统(一)的朋友们应该还有印象,上回我们介绍的模型是信息检索(retrieval),而在推荐系统中还有另一个任务模型,即为信息排序(ranking)。在排序阶段,其主要任务是对检索模型产出的条目进行调整以选择最有可能被用户喜欢和选择的电影条目。

今天,我们将详细介绍一下排序模型的原理和调用实例。

2 源码解析

  • 数据准备,获取数据并拆分数据集。

  • 搭建排序模型。

  • 拟合并评估模型。

2.1 数据准备

import os
import pprint
import tempfile

from typing import Dict, Text

import numpy as np
import tensorflow as tf
## TensorFlow Dataset Resource
import tensorflow_datasets as tfds

## TensorFlow 推荐系统
import tensorflow_recommenders as tfrs

TensorFlow Dataset中引入和信息检索模型相同的movielens电影数据集,并只保留以下三个变量:

ratings = tfds.load("movielens/100k-ratings", split="train")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值