1 前言
读过 TensorFlow推荐系统(一)的朋友们应该还有印象,上回我们介绍的模型是信息检索(retrieval),而在推荐系统中还有另一个任务模型,即为信息排序(ranking)。在排序阶段,其主要任务是对检索模型产出的条目进行调整以选择最有可能被用户喜欢和选择的电影条目。
今天,我们将详细介绍一下排序模型的原理和调用实例。
2 源码解析
-
数据准备,获取数据并拆分数据集。
-
搭建排序模型。
-
拟合并评估模型。
2.1 数据准备
import os
import pprint
import tempfile
from typing import Dict, Text
import numpy as np
import tensorflow as tf
## TensorFlow Dataset Resource
import tensorflow_datasets as tfds
## TensorFlow 推荐系统
import tensorflow_recommenders as tfrs
从TensorFlow Dataset
中引入和信息检索模型相同的movielens
电影数据集,并只保留以下三个变量:
ratings = tfds.load("movielens/100k-ratings", split="train")