线性代数知识点总结

线性代数知识点总结

行列式

  • 行列式和它的转置行列式相等
  • 对换行列式的两行(列),行列式变号
  • 如果行列式中有两行(列)相同或成比例,那么此行列式等于0
  • 行列式的某一行(列)中所有的元素都乘同一数k,等于用数k乘此行列式
  • 把行列式的某一行(列)的各元素乘同一数然后加到另一行(列)对应的元素上去,行列式不变
  • 行列式等于它的任一行(列)的各元素与其对应的各元素与其对应的代数余子式乘积之和
  • 行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零

矩阵

  • 由mxn个数 a i j a_{ij} aij 排成的m行n列的数表称为m行n列矩阵,简称mxn矩阵,为表示他是一个整体,总是加一个括弧,用大写黑体字母表示它,这mxn个数是矩阵A的元素,简称为元。

  • 行数和列数都等于n的矩阵称为n阶矩阵或n阶方阵。

  • 只有一行的矩阵叫行向量,只有一列的矩阵叫列向量。元素都是0的矩阵叫零矩阵。

  • 对于非齐次线性方程组,有系数矩阵,未知数矩阵,常数项矩阵,增广矩阵。

  • 从左上角到右下角的直线以外的元素都是0,这种矩阵叫对角矩阵,对角线上都是1,叫单位矩阵。

  • 矩阵加法满足交换律和结合律

  • A(mxs)、B(sxn),矩阵A乘矩阵B的乘积为矩阵C(mxn)。

  • 矩阵乘法满足结合律和分配律

  • EA = AE = A (E为单位矩阵)

  • λ \lambda λ E 称为纯量阵

  • 矩阵的幂: A k A^k Ak,显然只有方阵的幂才有意义

  • 矩阵的转置:把矩阵A的行换成同序数的列得到一个新矩阵,叫做A的转置矩阵,记作 A T A^T AT
    性质:
    1. ( A T ) T = A T (A^T)^T = A^T (AT)T=AT
    2. ( A + B ) T (A + B)^T (A+B)T = A T A^T AT + B T B^T BT
    3. ( A B ) T (AB)^T (AB)T = B T B^T BT A T A^T AT

  • 由n阶方阵A的元素所构成的行列式,称为方阵A的行列式,记作det A或 |A|

  • |AB|=|BA|

  • 行列式|A|的各个元素的代数余子式构成的矩阵叫A的伴随矩阵A*

  • A A* = A* A= |A| E

  • 对于n阶矩阵A,如果存在n阶矩阵B,sit:
    A B = B A = E AB = BA = E AB=BA=E

则说矩阵A是可逆的,B是A的逆矩阵。

  • 若矩阵A可逆,则 |A| 不等于0.

  • 若矩阵A可逆,且

  • A − 1 = 1 ∣ A ∣ A ∗ A^{-1} = \frac{1}{|A|} A^{*} A1=A1A
    其中A*是A的伴随矩阵。

  • 当|A|=0时,A称为奇异矩阵,否则是非奇异矩阵

  • ( A B ) − 1 = B − 1 A − 1 (AB)^{-1} = B^{-1}A^{-1} (AB)1=B1A1

  • ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)1=(A1)T

  • 设A是一个mxn矩阵,对A施行一次初等行变换,相当于在A的左边乘相应的m阶初等矩阵,对A施行一次初等列变换,相当于在A的右边乘相应的n阶初等矩阵

  • 方阵可逆的充分必要条件是A能通过初等变换到E

  • 如何利用行列式性质求解线性方程组?克拉默法则

矩阵的秩

定义:在mxn矩阵A中,任取k行和k列,位于这些行列交叉处的k*k个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式
设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式也全等于0,因此把r阶非零子式称为最高阶非零子式,数r称为矩阵A的秩,记作R(A),并规定零矩阵的秩等于0.
性质:

  • R ( A T ) = R ( A ) R(A^T) = R(A) R(AT)=R(A)
  • 可逆矩阵又称满秩矩阵,不可逆矩阵又称为降秩矩阵
  • 若P、Q可逆,则R(PAQ) = R(A)
  • max{R(A),R(B)} <= R(A,B) <= R(A) + R(B)
  • R(A+B) <= R(A) + R(B)
  • R(AB) <= min{R(A),R(B)}
  • 矩阵A的秩等于它的列数,这样的矩阵称为列满秩矩阵

解线性方程组,n元线性方程组Ax = b:

  • 无解的充要条件是R(A) <R(A,b)
  • 有唯一解的充要条件是R(A) = R(A,b) = n
  • 有无限多解的充要条件是R(A) = R(A,b) < n

向量

  • n个有次序的数 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an所组成的数组称为n维向量,列向量用a,b,c,d表示,行向量右上角加T
  • 给定向量组A: a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an,对于任何一组实数 k 1 , k 2 , . . . , k n k_1,k_2,...,k_n k1,k2,...,kn,表达式 k 1 a 1 + k 2 a 2 + . . . + k n a n k_1 a_1 + k_2 a_2+...+k_na_n k1a1+k2a2+...+knan称为向量组A的一个线性组合, k 1 , k 2 , . . . , k n k_1,k_2,...,k_n k1,k2,...,kn称为线性组合的系数
  • 向量b能由向量组A线性表示的充分条件是矩阵A= ( a 1 , a 2 , . . . , a n ) (a_1,a_2,...,a_n) (a1,a2,...,an)的秩等于矩阵B= ( a 1 , a 2 , . . . , a n , b ) (a_1,a_2,...,a_n,b) (a1,a2,...,an,b)
  • 向量组B能由向量组A线性表示的充要条件是矩阵A的秩等于矩阵(A,B)的秩,即R(A) = R(A,B)
  • 设向量组B能由向量组A线性表示,则R(B) <= R(A)
  • 给定向量组A: a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an,如果存在不全为0的数 k 1 , k 2 , . . . , k n k_1,k_2,...,k_n k1,k2,...,kn,使
    k 1 a 1 + k 2 a 2 + . . . + k n a n = 0 k_1 a_1 + k_2 a_2+...+k_na_n = 0 k1a1+k2a2+...+knan=0
    则称向量组A是线性相关的,否则称它线性无关

线性相关性质:

  • 向量组线性相关的充要条件是它所构成的矩阵A=(a_1,a_2,…,a_n)的秩小于向量个数n;向量组A线性无关的充分必要条件是R(A) = n
  • 若向量组 A = ( a 1 , a 2 , . . . , a n ) A=(a_1,a_2,...,a_n) A=(a1,a2,...,an)线性相关,则向量组 B = ( a 1 , a 2 , . . . , a n , a n + 1 ) B=(a_1,a_2,...,a_n,a_{n+1}) B=(a1,a2,...,an,an+1)也线性相关,反之,若B线性无关,则A线性无关
  • m个n维向量组成的向量组,当维数n小于向量个数m时,一定线性相关,特别的n+1个n维向量线性相关
  • 设向量组 A = ( a 1 , a 2 , . . . , a n ) A=(a_1,a_2,...,a_n) A=(a1,a2,...,an)线性无关,而向量组B: ( a 1 , a 2 , . . . , a n , b ) (a_1,a_2,...,a_n,b) (a1,a2,...,an,b)线性无关,则向量b必能由A线性表示,且表示式唯一

向量组的秩:
定义:

  • 向量组 A 0 : = ( a 1 , a 2 , . . . , a r ) A_0:=(a_1,a_2,...,a_r) A0:=(a1,a2,...,ar)线性无关
  • 向量组A做任何r+1个向量都线性相关,则A0是向量组A的一个最大线性无关向量组,r为向量组A的秩,记作 R A R_A RA

定理:

  • 矩阵的秩等于它的列向量组的秩,也等于它的行向量组的秩
  • 向量组B能由向量组A线性表示的充要条件是 R ( A ) = R ( a 1 , a 2 , . . . , a n , b 1 , b 2 , . . . , b n ) R(A) = R(a_1,a_2,...,a_n,b_1,b_2,...,b_n) R(A)=R(a1,a2,...,an,b1,b2,...,bn)

向量空间:
定义:

  • 设V为n维向量的集合,如果集合V非空,且集合V对于向量的加法即数乘两种运算封闭,那么集合V称为向量空间。
  • 如果 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an线性无关,且V中任何一个向量都可由 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an线性表示, a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an称为V的一个基,n称为V的维数

向量的内积:
设有n维向量 x = ( x 1 , x 2 , . . . , x n ) , y = ( y 1 , y 2 , . . . , y n ) x=(x_1,x_2,...,x_n),y=(y_1,y_2,...,y_n) x=(x1,x2,...,xn),y=(y1,y2,...,yn) [ x , y ] = x 1 y 2 + x 2 y 2 + . . . + x n y n [x,y]= x_1y_2+x_2y_2+...+x_ny_n [xy]=x1y2+x2y2+...+xnyn叫做向量x与y的内积

向量的长度:
∣ ∣ x ∣ ∣ = [ x , x ] = x 1 2 + x 2 2 + . . . + x n 2 ||x|| = \sqrt{[x,x]} = \sqrt{x_1^2 + x_2^2 + ... + x_n^2} x=[x,x] =x12+x22+...+xn2
称为n维向量x的长度,长度为1的向量称为单位向量

当[x,y]=0时,称向量x与y正交

定理:若n维向量 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an是两两正交的非零向量,则 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an线性无关

如果n阶矩阵A满足 A T A = E A^TA=E ATA=E,那么称A为正交矩阵,若P为正交矩阵,则y=Px称为正交变换。

方阵的特征值:
设A是n阶矩阵,如果数 λ \lambda λ和n维非零列向量x使关系式
A x = λ x Ax = \lambda x Ax=λx成立,那么这样的数 λ \lambda λ称为矩阵A的特征值,非零向量x为A对于与 λ \lambda λ的特征向量。 ( A − λ E ) = 0 (A-\lambda E) = 0 (AλE)=0 是特征方程组,它的解就是A的特征值

定理:设 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn是方阵A的n个特征值, p 1 , p 2 , p 3 , . . , p n p_1,p_2,p_3,..,p_n p1,p2,p3,..,pn是与其对应的特征向量,如果 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn各不相等,则 p 1 , p 2 , p 3 , . . , p n p_1,p_2,p_3,..,p_n p1,p2,p3,..,pn线性无关。

相似矩阵:
设A、B都是n阶矩阵,若有可逆矩阵P,sit P − 1 A P = B P^{-1} A P = B P1AP=B
则称B是A的相似矩阵。

定理:

  • 若n阶矩阵A与B相似,则A与B的特征多项式相同,从而A与B的特征值相同。
  • n阶矩阵A与对角矩阵相似的充分必要条件是A有n个线性无关的特征向量
  • 对称矩阵的特征值为实数
  • 对称矩阵的两个特征值不相等,其对应的特征向量正交

正定矩阵:
设二次型 f = x T A x f=x^TAx f=xTAx,如果对任意x不等于0,都有f(x) > 0 ,那么f为正定二次型,对称矩阵A为正定的,若都小于0,则负定

定理:

  • 对称矩阵A为正定的充要条件是A的特征值全为正或各阶主子式都为正
  • 对称矩阵A为负定的充要条件是奇数阶主子式为负,偶数阶主子式为正
  • 10
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值