大数据存储---HBase介绍(上)

本次主要介绍三部分:

  • HBase简介
  • HBase整体架构
  • HBase安装和启动
  • Hbase基本操作

HBase简介

hbase是bigtable的开源java版本,是建立在hdfs之上。 提供高可靠性、高性能、列存储、可伸缩、实时读写nosql的数据库系统。

它介于nosql和关系型数据库之间,仅能通过主键(row key)和主键的range来检索数据,仅支持单行事务(可通过hive支持来实现多表join等复杂操作)。
主要用来存储结构化和半结构化的松散数据。

  • Hbase查询数据功能很简单,不支持join等复杂操作,不支持复杂的事务(行级的事务)
  • Bigtable 是一个稀疏的、分布式的、持久化存储的多维度排序Map。 Map 的索引是行关键字、列关键字以及时间戳; Map 中的每个 value 都是一个未经解析的 byte 数组。
  • 与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
便存储数据的特点
  • 大:一个表可以有上十亿行,上百万列
  • 面向列:面向列(族)的存储和权限控制,列(族)独立检索。
  • 稀疏:对于为空(null)的列,并不占用存储空间,因此,表可以设计的非常稀疏。
与关系型数据库的区别
  • 1、行式数据库在分析的时候,将id,name,age,sex,score;完整的信息读入内存,造成大量的内存和IO浪费。
  • 2、列式数据库的思维是把行式数据库全部拆开,按照列的方式重新组合存储,一列所有的行的数据存放在一起。带来的好处就是,要分析男女就直接访问所有的男女信息,要分析销售额,就直接访问消费额相关的数据。
  • 在这里插入图片描述
HBase的表数据结构

在这里插入图片描述

  • 表(table):用于存储管理数据,具有稀疏的、面向列的特点。HBase中的每一张表,就是所谓的大表(Bigtable),可以有上亿行,上百万列。对于为值为空的列,并不占用存储空间,因此表可以设计的非常稀疏。
  • 行键(RowKey):类似于MySQL中的主键,HBase根据行键来快速检索数据,一个行键对应一条记录。与MySQL主键不同的是,HBase的行键是天然固有的,每一行数据都存在行键。
  • 列族(ColumnFamily):是列的集合。列族在表定义时需要指定,而列在插入数据时动态指定。列中的数据都是以二进制形式存在,没有数据类型。在物理存储结构上,每个表中的每个列族单独以一个文件存储。一个表可以有多个列簇。
  • 时间戳(TimeStamp):是列的一个属性,是一个64位整数。由行键和列确定的单元格,可以存储多个数据,每个数据含有时间戳属性,数据具有版本特性。可根据版本(VERSIONS)或时间戳来指定查询历史版本数据,如果都不指定,则默认返回最新版本的数据。
  • 区域(Region):HBase自动把表水平划分成的多个区域,划分的区域随着数据的增大而增多。

HBase整体架构

在这里插入图片描述

  • Client

    • ①使用HBase RPC机制与HMaster和HRegionServer进行通信;
    • ②Client与HMaster进行通信进行管理类操作;
    • ③Client与HRegionServer进行数据读写类操作。
  • Zookeeper

    • ①保证任何时候,集群中只有一个running master,避免单点问题;
    • ②存贮所有Region的寻址入口,包括-ROOT-表地址、HMaster地址;
    • ③实时监控Region Server的状态,将Region server的上线和下线信息,实时通知给Master;
    • ④存储Hbase的schema,包括有哪些table,每个table有哪些column family。
  • HMaster
    可以启动多个HMaster,通过Zookeeper的Master Election机制保证总有一个Master运行。
    角色功能:

    • ①为Region server分配region;
    • ②负责region server的负载均衡;
    • ③发现失效的region serve并重新分配其上的region;
    • ④GFS上的垃圾文件回收;
    • ⑤处理用户对标的增删改查操作。
  • HRegionServer
    HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据。作用:

    • ①维护Master分配给它的region,处理对这些region的IO请求;
    • ②负责切分在运行过程中变得过大的region。
    • 此外,HRegionServer管理一些列HRegion对象,每个HRegion对应Table中一个Region,HRegion由多个HStore组成,每个HStore对应Table中一个Column Family的存储,Column Family就是一个集中的存储单元,故将具有相同IO特性的Column放在一个Column Family会更高效。
  • HStore
    HBase存储的核心,由MemStore和StoreFile组成。
    用户写入数据的流程为:client写入 -> 存入MemStore,一直到MemStore满 -> Flush成一个StoreFile,直至增长到一定阈值 -> 触发Compact合并操作 -> 多个StoreFile合并成一个StoreFile,同时进行版本合并和数据删除 -> 当StoreFiles Compact后,逐步形成越来越大的StoreFile -> 单个StoreFile大小超过一定阈值后,触发Split操作,把当前Region Split成2个Region,Region会下线,新Split出的2个孩子Region会被HMaster分配到相应的HRegionServer上,使得原先1个Region的压力得以分流到2个Region上,如图所示。
    在这里插入图片描述
    HRegion
    一个表最开始存储的时候,是一个region。
    一个Region中会有个多个store,每个store用来存储一个列簇。如果只有一个column family,就只有一个store。
    region会随着插入的数据越来越多,会进行拆分。默认大小是10G一个。

  • HLog

    • 在分布式系统环境中,无法避免系统出错或者宕机,一旦HRegionServer意外退出,MemStore中的内存数据就会丢失,引入HLog就是防止这种情况。
    • 工作机制:
      每个HRegionServer中都会有一个HLog对象,HLog是一个实现Write Ahead Log的类,每次用户操作写入Memstore的同时,也会写一份数据到HLog文件,HLog文件定期会滚动出新,并删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知,HMaster首先处理遗留的HLog文件,将不同region的log数据拆分,分别放到相应region目录下,然后再将失效的region重新分配,领取到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复。

HBase的安装和基本操作

HBase的安装
  • 下载安装
wget http://mirrors.hust.edu.cn/apache/hbase/1.3.1/hbase-1.3.1-bin.tar.gz
tar -zxvf hbase-1.3.1-bin.tar.gz -C /export/servers/
cd ../servers/
mv hbase-1.3.1 hbase
vi /etc/profile
-
export HBASE_HOME=/export/servers/hbase
export PATH=${HBASE_HOME}/bin:$PATH
-
source /etc/profile
  • 修改配置文件
  1. 进入配置文件所在的目录
    cd /export/servers/hbase/conf/
  2. 修改第一个配置文件 regionservers
vi regionservers 
-
node02
node03
  1. 修改第二个配置文件 hbase-site.xml
注意:以下配置集成的是hadoop ha集群。
如果您的集群没有配置ha,hbase.rootdir 配置项目需要修改:hdfs://master:9000/hbase
vi hbase-site.xml 
-
<configuration>
  <property>
    <name>hbase.rootdir</name>
    <value>hdfs://ns1/hbase</value>
  </property>
  <property>
     <name>hbase.cluster.distributed</name>
     <value>true</value>
  </property>
  <property>
     <name>hbase.master.port</name>
     <value>16000</value>
  </property>
   <property>
    <name>hbase.zookeeper.property.dataDir</name>
    <value>/export/data/zk/</value>
  </property>
  <property>
    <name>hbase.zookeeper.quorum</name>
    <value>node01,node02,node03</value>
  </property>
  <property>
    <name>hbase.zookeeper.property.clientPort</name>
    <value>2181</value>
  </property>
</configuration>
  1. 修改第三个配置文件 hbase-env.sh
HBASE_MANAGES_ZK=false 表示,hbase和大家伙公用一个zookeeper集群,而不是自己管理集群。

vi hbase-env.sh
-
export JAVA_HOME=/export/servers/jdk
export HBASE_MANAGES_ZK=false
分发其他节点并启动
分发配置文件
scp -r /export/servers/hbase/ node02:/export/servers/
scp -r /export/servers/hbase/ node03:/export/servers/

启动集群
startzk.sh
start-dfs.sh
start-hbase.sh

HBase的基本操作

命令文件如下
在这里插入图片描述
可以通过HbaseUi界面查看表的信息

端口60010打不开的情况,是因为hbase 1.0 以后的版本,需要自己手动配置,在文件 hbase-site

<property>  
	<name>hbase.master.info.port</name>  
	<value>60010</value>  
</property> 
连接集群
hbase shell
创建表
create 'user','base_info'
插入数据
put 'user','rowkey_10','base_info:username','张三'
put 'user','rowkey_10','base_info:birthday','2014-07-10'
put 'user','rowkey_10','base_info:sex','1'
put 'user','rowkey_10','base_info:address','北京市'

put 'user','rowkey_16','base_info:username','张小明'
put 'user','rowkey_16','base_info:birthday','2014-07-10'
put 'user','rowkey_16','base_info:sex','1'
put 'user','rowkey_16','base_info:address','北京'

put 'user','rowkey_22','base_info:username','陈小明'
put 'user','rowkey_22','base_info:birthday','2014-07-10'
put 'user','rowkey_22','base_info:sex','1'
put 'user','rowkey_22','base_info:address','上海'

put 'user','rowkey_24','base_info:username','张三丰'
put 'user','rowkey_24','base_info:birthday','2014-07-10'
put 'user','rowkey_24','base_info:sex','1'
put 'user','rowkey_24','base_info:address','河南'

put 'user','rowkey_25','base_info:username','陈大明'
put 'user','rowkey_25','base_info:birthday','2014-07-10'
put 'user','rowkey_25','base_info:sex','1'
put 'user','rowkey_25','base_info:address','西安'
查询数据
//查询所有数据
scan 'user'
//查询某个列簇的数据
get 'user','rowkey_16','base_info'
get 'user','rowkey_16','base_info:username'
get 'user', 'rowkey_16', {COLUMN => ['base_info:username','base_info:sex']}
删除表中的数据
delete 'user', 'rowkey_16', 'base_info:username'
清空数据
truncate 'user'
操作列簇
alter 'user', NAME => 'f2'
alter 'user', 'delete' => 'f2'
删除表
disable 'user'
drop 'user'

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值