ubuntu 使用yolov3 yolo-tiny-v3 基于cudnn 7.1 + cuda 9.1 + opencv 3.4.0 以及yolo数据集制作

1.我在Ubuntu官网上直接下载并安装ubuntu ,显卡使用的gtx1070

2.在nvidia官网家上下载cuda9.1 runtime ubuntu16.04版本

3.下载cudnn7.1 (需要注册)

4.在opencv官网上下载opencv3.4.0 源代码

5.在nvidia官网上下载最新版本的驱动(使用cuda的驱动需要降低内核版本,而我在测试阶段降低内核版本后由于网卡驱动的不兼容断网,所以懒得折腾了就直接使用nvidia官网上的驱动,而如果使用ubuntu addintional driver中的驱动会造成版本的不支持,也懒得折腾索性直接用官网的驱动)

安装过程:1.由于yolo不需要opencv对python的支持,所以不折腾opencv对python的支持安装,直接无脑根据官网的安装方式装,装依赖,然后cmake,make,make install就折腾完了

               2.安装cuda,根据cuda Document中的要求关闭和图形界面有关的所有东西(注:sudo service lightdm stop关闭图形界面),选择的时候不安装驱动,其他的全部yes就行了

               3.安装驱动,一样需要关闭图形界面,省的出奇奇怪怪的问题。sh run就行了。

               4.安装yolo,用github上https://github.com/pjreddie/darknet.git下载源代码,修改Makefile文件opencv,cudnn,cuda=1,然后make就行了。

6.数据集的制作:

6.1 使用https://github.com/tzutalin/labelImg.git的工具,我这里用的是自己的视频,用ffmpeg将视频剪辑成图片序列名字用yolo要求的名字--%06d(其实也无所谓,就是方便管理)

6.2 使用labelimg,类型选择yolo新建一个文件夹,叫VOC好了,目录结构如下:

--VOC

----JPEGImages

----labels

--train.txt

JPEGImages中存放图片,train.txt中存放所有图片的绝对路径,labels中存放labelimg工具中生成的标签文件。

7.训练

根据需求训练,本人使用过yolov3,yolov3-tiny 在darknet文件夹下的cfg文件夹下的几个cfg文件,修改classes和filters就行了(classes+croods+1)*3=filters

然后根据官网上的训练就完事儿了。

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭