20-ICE_ITMC-WiFi-based_In-home_Fall-detection_Utility_Application_of_WiFi_Channel_State_Information_

摘要:跌倒是老一辈人受伤和死亡的主要原因。 家庭坠落监控系统提高了安全性,同时允许持续的独立性。 基于 WiFi 的家庭跌倒检测实用程序通过利用 WiFi 信道状态信息来监控用户,区分跌倒与正常的日常活动,如果发生跌倒,会自动通知用户选择的紧急联系人。
传入的 CSI 数据作为 3 维整数矩阵被接收。在数据收集过程中,每次试验都包含 15 秒的数据,这些数据后来被分成三秒的块,以一秒为增量。训练完成后,会持续收集数据,但仅使用前三秒进行预测。再加上 CSI 以 50Hz 的速率采样,数据收集期间的每个矩阵变为 750 个元素长。训练和预测发生在 150 个元素长的矩阵上。 WIFU 设备包含两个功能天线,路由器包含三个。每个设备-路由器天线对产生自己的一组信息,总共有六组。传入数据以相量表示法表示,这是一个描述传入无线电波幅度和相位的复数。然后将实部和虚部分开,使数据集的总数等于 12。最后,CSI 包含有关三十个独立频段的信息。生成的训练和预测矩阵的形状为 150x12x30。训练完成后,连续收集的数据将输入 DNN。然后,该模型评估在三秒段内是否发生跌倒。如果检测到跌倒,系统将显示一条消息并通过短信提醒任何联系人。
在我们提出的模型中,我们实现了一种简单的三层 DNN 方法,具有一个输入层、一个单一的隐藏层和一个输出层。 在每一层之间,进行批量归一化。 在输入层之后和隐藏层之前,使用展平层对数据进行展平。 在隐藏层和输出层之间,包含一个 dropout 层,dropout 率为 0.4。 用于初始输入的激活函数是 Rectified Linear Unit,或 ReLu,而输出使用的是 sigmoid 激活函数。
在这里插入图片描述

在这里插入图片描述

D. 实验 (s) 数据收集是在没有使用外部参与者的情况下进行的。六名小组成员成对进行数据收集。一名小组成员充当促进者并控制数据收集程序,而另一名小组成员则是执行数据收集预定操作的参与者。由于收集数据的计算机需要穿过产生 WiFi CSI 的路由器,因此在数据收集期间,协助者和参与者都留在模拟公寓中。使用的数据集由 1,450 次试验组成。每项试验都包括一项日常活动或一种跌倒。日常活动包括诸如穿过房间、从坐姿过渡到站立姿势以及弯腰从地板上捡起物体等行为。跌倒的类型包括向前或向后绊倒、从坐姿跌落和昏厥。总共考虑了 36 种情景,包括 20 种正常的日常活动和 16 种跌倒类型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值