15-ICOST-Anti-fall-A Non-intrusive and Real-Time Fall Detector Leveraging CSI from Commodity WiFi Devices
摘要——跌倒是老年人独立生活的主要健康威胁和障碍之一,及时可靠的跌倒检测对于减轻跌倒的影响至关重要。 在本文中,我们利用商品 WiFi 设备中的细粒度信道状态信息 (CSI) 和多天线设置,设计并实现了一种实时、非侵入性和低成本的室内跌倒检测器,称为 Anti-Fall . 第一次,两个天线上的 CSI 相位差被确定为可靠地分割跌倒和类似跌倒活动的显着特征,然后利用 CSI 的相位和幅度信息来准确地将跌倒与其他类似跌倒活动分开。 在两个室内场景中的实验结果表明,Anti-Fall 始终优于最先进的方法 WiFall,检测率平均提高 10%,误报率降低 10%。
我们没有手动收集跌倒和其他活动 RF 信号以进行训练和测试,而是找到了一种稳健的方法,使用两个天线上的 CSI 相位差作为显着特征来分割跌倒和类似跌倒的活动。 我们进一步从 CSI 的幅度和相位信息中提取特征,利用空间和频率多样性来区分跌倒和类似跌倒的活动。
Activity Segmentation Activity Segmentation 模块的主要功能是将跌倒和类似跌倒的活动挑出来做进一步的分类。 它包括两个步骤:在步骤1中,通过检测CSI相位差的方差,自动识别跌倒或类跌倒活动的终点; 然后在步骤 2 中,通过估计跌倒活动的最佳窗口大小来确定跌倒或类似跌倒活动的起点。
比较相位差作为阈值监测是否有活动发生
特征提取。 我们选择以下七个特征作为[12]进行活动分类:(1)CSI的归一化标准偏差(STD),(2)中值绝对偏差(MAD),(3)活动的周期,(4) 信号强度的偏移,(5)四分位距(IR),(6)信号熵,(7)信号变化的速度。 然而,与仅从 CSI 幅度信息中提取特征的 [12] 不同,我们从 CSI 幅度和相位信息中提取上述每个特征。 此外,由于人类活动独立地影响不同的无线链路,而以类似的方式影响相邻的子载波 [12],我们选择四个子载波,在所有可用的 30 个子载波中均匀分布。 因此每条链路分别在四个子载波上产生上述7个幅度和相位信息的特征,它们共同构成了SVM分类器的输入。
实验设置 我们使用 802.11n WiFi 网络进行实验,其中一台现成的 WiFi 设备(即带有两个内置天线的戴尔笔记本电脑)连接到商业无线接入点(即带有一根天线运行的 TP-Link WDR5300 路由器) 5GHz)。 笔记本电脑配备了英特尔 WiFi Link 5300 卡,用于测量 CSI [9]。 无线数据传输速率设置为每秒 100 个数据包。 我们在两个不同大小的房间中进行实验以测试我们方法的通用性。 这两个房间的实验设置如图 4 所示。较小的房间(即办公室)的大小约为 3m × 4m,而较大的房间(即会议室)的大小约为 6m × 6m。
在这一部分,我们首先在 FDR 和 FPR 方面比较 Anti-Fall 与基线方法 WiFall 的性能。 然后,我们评估了 Anti-Fall 系统相对于各种环境变化的系统鲁棒性。
性能比较。图 7 显示了 Anti-Fall 相对于基线方法的性能。平均两个房间的实验结果,Anti-Fall 实现了 89% 的检测率和 13% 的误报率。与基线方法 WiFall 相比,Anti-Fall 检测率提高 10%,误报率降低 10%。对环境变化的稳健性。由于据说无线信号对环境变化非常敏感,因此我们评估了我们的方法对几种常见设置变化的稳健性,包括打开门窗、开/关灯、移动家具。虽然两个测试室的窗户/门的打开或灯的开/关对防坠落系统的性能影响不大,但当沙发等家具移动时,其性能会下降。具体来说,当沙发从图 8 所示的办公室窗边移到门边时,FDR 从 83% 下降到 76%,而 FPR 从 9% 增加到 34%。因此,家具移动似乎对跌倒检测性能有相当大的影响,因为它会由于无线信号传播路径的变化而导致显着的 CSI 变化,这需要重新构建分类模型。