python
文章平均质量分 53
VLU
这个作者很懒,什么都没留下…
展开
-
2021-CCNC-Congestion-Aware Suspicious Object Detection
摘要——致命疾病和恐怖袭击严重威胁着人类安全,对全球安全构成挑战。为了解决这个问题,城市监控系统正在以成熟但效率低下的解决方案在大规模网络中快速应用。当监控网络正在管理从多个边缘节点生成的数据时,由于数据流量集中和数据传输机制效率低下,很容易造成拥塞。同时,5G技术应对爆发式移动数据流量增长和海量设备连接,可以实现真正的“万物互联”,构建社会经济数字化转型。在本文中,在 5G 技术的背景下,我们基于下一代网络概念设计的可疑对象网络系统 (SONS) 提出了一个以信息为中心的网络 (ICN) 监视系统。在该解原创 2021-06-29 10:08:30 · 201 阅读 · 0 评论 -
One-class Classification with Deep Autoencoder Neural Networks for Author Verification in Internet R
One-class Classification with Deep Autoencoder Neural Networks for Author Verification in Internet Relay Chat-AICCSA 2019在本文中,我们设计了一个自主的IRC监控系统,执行递归深度学习来分类消息的威胁级别,并开发了一种基于深度自编码神经网络的单类分类作者验证方法。实验结果表明,该方法能够成功地对IRC用户进行有效的作者验证。方法:给一组明确的候选人分组,其他类型进行判别直接归为嫌疑人(原创 2021-01-19 17:46:46 · 294 阅读 · 0 评论 -
Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering-ICML 2017
大多数学习方法分别处理降维(DR)和聚类(即顺序),但最近的研究表明,联合优化这两个任务可以显著提高两者的性能。后者的前提是数据样本是通过容易聚类的潜在表示的线性变换获得的;但在实践中,从潜在空间到数据的转换可能会更加复杂。在这项工作中,我们假定这个变换是一个未知的,可能是非线性的函数。为了恢复“聚类友好型”潜在表示并更好地聚类数据,我们提出了一种DR和K-means联合聚类方法,其中DR是通过学习深度神经网络(DNN)来完成的。其动机是保持联合优化两个任务的优势,同时利用深度神经网络近似任何非线性函数的能原创 2020-12-29 14:25:38 · 588 阅读 · 0 评论 -
One-Class Convolutional Neural Network -CoRR abs(2019)
我们提出了一种基于卷积神经网络(CNN)的单类分类方法。该思想是使用潜在空间中的零中心高斯噪声作为伪负类,并使用交叉熵损失训练网络,以学习一个好的表示和给定类的决策边界。该方法的一个重要特点是,任何预先训练好的CNN都可以作为单类分类的基础网络。本文提出的一类CNN是基于UMDAA-02 Face、abnormity -1001和FounderType200数据集进行评估的。这些数据集涉及到各种单一类的应用问题,如用户认证、异常检测和新颖性检测。大量的实验表明,该方法比目前最先进的方法有显著的改进。源代码可原创 2020-12-29 14:24:33 · 1930 阅读 · 2 评论 -
Adversarial Autoencoders
A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey. (2015). ‘‘Adversarial autoencoders.’’ [Online]该文提出“对抗式自动编码器”(AAE),这是一种概率式的自动编码器,它利用新提出的生成式对抗网络(GAN),以任意先验分布匹配自编码器隐藏码向量的后验集合来进行变分推理。将聚集的后验与先验进行匹配,可确保从先验空间的任何部分生成有意义的样本。因此,对抗性自动编码器的解码器学习了一个深度生成模原创 2020-12-18 19:10:53 · 347 阅读 · 0 评论 -
深度聚类算法综合
介绍 A Survey of Clustering With Deep Learning: From the Perspective of Network Architecture:聚类是许多数据驱动应用程序领域中的一个基本问题,集群的性能在很大程度上取决于数据表示的质量。因此,线性或非线性特征变换被广泛用于学习更好的聚类数据表示。近年来,大量的研究都集中在利用深度神经网络学习一种对聚类友好的表示,聚类性能得到了显著的提高。在本文中,我们从建筑学的角度对深度学习聚类进行了系统的研究。具体来说,为了更好的理原创 2020-11-26 21:43:47 · 3013 阅读 · 0 评论 -
pix2pix算法原理与实现
一、算法名称 Pix2pix算法(Image-to-Image Translation,图像翻译)来源于论文:Image-to-Image Translation with Conditional Adversarial Networks二、算法简要介绍、研究背景与意义2.1介绍图像处理、图形学和视觉中的许多问题都涉及到将输入图像转换为相应的输出图像。这些问题通常使用特定于应用程序的算法来处理,尽管设置总是相同的:将像素映射到像素。条件对抗性网(cGAN)是一种通用的解决方案,它似乎能很好地解决各原创 2020-11-26 21:25:43 · 19224 阅读 · 3 评论 -
Detecting Suspicious Objects With a Humanoid Robot Having a Metal Detector
Detecting Suspicious Objects With a Humanoid Robot Having a Metal Detector:保安机器人需要在机场,仓库,购物中心等场所巡逻,并找到并应对可疑人员。在这项研究中,我们旨在通过类人机器人实现巡逻任务。操作员使用具有金属探测器的人形机器人进行遥控操作,并将探测器摆动到与犯罪嫌疑人衣服表面短距离的位置,并检查衣服下面是否有隐藏的金属物体。为了开发该人体扫描系统,实验确定了取决于摆动速度的金属探测器的测量范围。基于此知识,在3种条件下进行了..原创 2020-11-26 21:08:39 · 163 阅读 · 0 评论 -
互补学习&实例聚类实现WSOD
1、介绍 Weakly Supervised Object Detection Using Complementary Learning and Instance Clustering论文介绍:监督对象检测方案使用完全注释的训练数据,这是相当昂贵的。而弱监督对象检测(WSOD)仅使用图像级别的注释进行训练,这种注释更容易获取。 WSOD是一项具有挑战性的任务,因为它旨在学习使用图像级标签进行对象定位和检测。根据这一主张,在本文中,我们提出了基于判别特征学习的WSOD端到端框架。我们使用客观技术从图像中获取原创 2020-11-26 21:06:18 · 816 阅读 · 0 评论 -
torch.nn.LSTM()
import torchimport torch.nn as nnlstm = nn.LSTM(10, 20, 2)x = torch.randn(5, 3, 10)h0 = torch.randn(2, 3, 20)c0 = torch.randn(2, 3, 20)output, (hn, cn)=lstm(x, (h0, c0))>>output.shape torch.Size([5, 3, 20])hn.shape torch.Size([2, 3, 20])转载 2020-11-12 20:27:45 · 165 阅读 · 0 评论 -
torch.nn.LSTM()函数解析
参数列表:input_size 输入数据的特征维数,通常就是embedding_dim(词向量的维度)hidden_size LSTM中隐层的维度num_layers 循环神经网络的层数bias 用不用偏置,default=Truebatch_first 这个要注意,通常我们输入的数据shape=(batch_size,seq_length,embedding_dim),而batch_first默认是False,所以我们的输入数据最好送进LSTM之前将batch_size与seq_length这两个维度调原创 2020-11-12 20:08:37 · 1012 阅读 · 0 评论 -
PyTorch的nn.Linear()详解
PyTorch的nn.Linear()是用于设置网络中的全连接层的,需要注意的是全连接层的输入与输出都是二维张量,一般形状为[batch_size, size],不同于卷积层要求输入输出是四维张量。其用法与形参说明如下: in_features指的是输入的二维张量的大小,即...转载 2020-11-12 19:30:32 · 1652 阅读 · 0 评论 -
朴素贝叶斯分类器 MultinomialNB语种分辨
运用MultinomialNB分类器,和CountVectorizer特征提取器做语种分类import refrom sklearn.feature_extraction.text import CountVectorizerfrom sklearn.model_selection import train_test_splitfrom sklearn.naive_bayes import MultinomialNBclass LanguageDetector(): def __i原创 2020-11-12 15:36:39 · 505 阅读 · 1 评论 -
朴素贝叶斯分类器
目录 1 贝叶斯决策论 1.1 后验概率 1.2 贝叶斯定理 2. 朴素贝叶斯分类算法详解 3.例题分析 4. 朴素贝叶斯分类的优缺点 1 贝叶斯决策论 贝叶斯决策论(Bayesian decision theory)是概率框架下实施决策的基本方法。对分类任务来说,在所有相关概率都已知的理想情况下,贝叶斯决策轮考虑如何基于这些概率和误判损失来选择最优的类别标记。 1.1 后验概率...转载 2020-11-12 13:21:13 · 991 阅读 · 0 评论 -
贝叶斯分类器(Python实现+详细完整源码和原理)
在概率和统计学领域,贝叶斯理论基于对某一事件证据的认识来预测该事件的发生概率, 由结果推测原因的概率大小 首先,理解这个公式的前提是理解条件概率,因此先复习条件概率。 P(A|B)=P(AB)/P(B) 贝叶斯公式: 在机器学习领域,贝叶斯分类器是基于贝叶斯理论并假设各特征相互独立的分类方法, 基本方法是:使用特征向量来表征某个实体,并在该实体上绑定一个标签来代表其所属的类别。 优点:只需要极少数的训练数据,就可以建立起分类所需要的...转载 2020-11-12 13:09:06 · 4174 阅读 · 0 评论 -
train_test_split()函数
sklearn.model_selection.train_test_split随机划分训练集和测试集 官网文档:http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_test_split 一般形式:train_test_split是交叉验证中常用的函数,功能是从样本...转载 2020-11-12 13:05:04 · 3027 阅读 · 0 评论