python迭代法求极值_用Python实现最速下降法求极值

对于一个多元函数f(x)=f(x1,x2,?,xn),用最速下降法(又称梯度下降法)求其极小值的迭代格式为

xk+1=xk+αkdk

其中dk=?gk=??f(xk)为负梯度方向,即最速下降方向,αk为搜索步长。

一般情况下,最优步长αk的确定要用到线性搜索技术,比如精确线性搜索,但是更常用的是不精确线性搜索,主要是Goldstein不精确线性搜索和Wolfe法线性搜索。

为了调用的方便,编写一个Python文件,里面存放线性搜索的子函数,命名为linesearch.py,这里先只编写了Goldstein线性搜索的函数,关于Goldstein原则,可以参看最优化课本。

线性搜索的代码如下(使用版本为Python3.3):

'''

线性搜索子函数

'''

import numpy as np

import random

def goldsteinsearch(f,df,d,x,alpham,rho,t):

flag=0

a=0

b=alpham

fk=f(x)

gk=df(x)

phi0=fk

dphi0=np.dot(gk,d)

alpha=b*random.uniform(0,1)

while(flag==0):

newfk=f(x+alpha*d)

phi=newfk

if(phi-phi0<=rho*alpha*dphi0):

if(phi-phi0>=(1-rho)*alpha*dphi0):

flag=1

else:

a=alpha

b=b

if(b

alpha=(a+b)/2

else:

alpha=t*alpha

else:

a=a

b=alpha

alpha=(a+b)/2

return alpha1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

上述函数的输入参数主要包括一个多元函数f,其导数df,当前迭代点x和当前搜索方向d,返回值是根据Goldstein准则确定的搜索步长。

我们仍以Rosenbrock函数为例,即有

f(x)=100(x2?x21)2+(1?x1)2

于是可得函数的梯度为

g(x)=?f(x)=(?400(x2?x21)x1?2(1?x1),200(x2?x21))T

最速下降法的代码如下:

"""

最速下降法

Rosenbrock函数

函数 f(x)=100*(x(2)-x(1).^2).^2+(1-x(1)).^2

梯度 g(x)=(-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1)),200*(x(2)-x(1)^2))^(T)

"""

import numpy as np

import matplotlib.pyplot as plt

import random

import linesearch

from linesearch import goldsteinsearch

def rosenbrock(x):

return 100*(x[1]-x[0]**2)**2+(1-x[0])**2

def jacobian(x):

return np.array([-400*x[0]*(x[1]-x[0]**2)-2*(1-x[0]),200*(x[1]-x[0]**2)])

X1=np.arange(-1.5,1.5+0.05,0.05)

X2=np.arange(-3.5,2+0.05,0.05)

[x1,x2]=np.meshgrid(X1,X2)

f=100*(x2-x1**2)**2+(1-x1)**2; # 给定的函数

plt.contour(x1,x2,f,20) # 画出函数的20条轮廓线

def steepest(x0):

print('初始点为:')

print(x0,'\n')

imax = 20000

W=np.zeros((2,imax))

W[:,0] = x0

i = 1

x = x0

grad = jacobian(x)

delta = sum(grad**2) # 初始误差

while i10**(-5):

p = -jacobian(x)

x0=x

alpha = goldsteinsearch(rosenbrock,jacobian,p,x,1,0.1,2)

x = x + alpha*p

W[:,i] = x

grad = jacobian(x)

delta = sum(grad**2)

i=i+1

print("迭代次数为:",i)

print("近似最优解为:")

print(x,'\n')

W=W[:,0:i] # 记录迭代点

return W

x0 = np.array([-1.2,1])

W=steepest(x0)

plt.plot(W[0,:],W[1,:],'g*',W[0,:],W[1,:]) # 画出迭代点收敛的轨迹

plt.show()1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

601

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

为了实现不同文件中函数的调用,我们先用import函数导入了线性搜索的子函数,也就是下面的2行代码

import linesearch

from linesearch import goldsteinsearch1

21

2

当然,如果把定义goldsteinsearch函数的代码直接放到程序里面,就不需要这么麻烦了,但是那样的话,不仅会使程序显得很长,而且不便于goldsteinsearch函数的重用。

此外,Python对函数式编程也支持的很好,在定义goldsteinsearch函数时,可以允许抽象的函数f,df作为其输入参数,只要在调用时实例化就可以了。与Matlab不同的是,传递函数作为参数时,Python是不需要使用@将其变为函数句柄的。

运行结果为

初始点为:

[-1.2 1. ]

迭代次数为: 1504

近似最优解为:

[ 1.00318532 1.00639618]1

2

3

4

5

6

71

2

3

4

5

6

7

迭代点的轨迹为

由于在线性搜索子程序中使用了随机函数,初始搜索点是随机产生的,因此每次运行的结果不太相同,比如再运行一次程序,得到

初始点为:

[-1.2 1. ]

迭代次数为: 1994

近似最优解为:

[ 0.99735222 0.99469882]1

2

3

4

5

6

71

2

3

4

5

6

7

所得图像为

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值