深度学习求偏导代码_深度学习论文代码复现模版和阅读技巧

本文探讨深度学习论文中的代码实现结构,尤其是模型压缩和GAN/网络设计/模型压缩等领域。理解代码结构能加速代码阅读和复现,作者分享了常见代码结构,并提供实际案例和模版,旨在帮助读者更快实现深度学习模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fac2074880808a7b9a82c5212dea869d.png
深度学习论文的复现一直是一个比较耗时的事情(感谢那些发paper带code的作者!)。与此同时,由于一些作者的编程习惯不太好(比如不写文档,不写注释),让阅读代码的速度也慢上不少。如果各位的代码能力不强,读起代码就是真滴难受(比如我。。),于是乎我就想办法尽可能减缓以上问题代码的损失,所以就写下本文。

本专题主要分两部分:

  1. 深度学习相关论文中常见的代码实现结构(这篇文章讲这个)
  2. 各种各样奇形怪状loss的实例

最近偷偷看了一筐论文(我吹的),主要是GAN/网络设计/模型压缩方面的,发现不同子领域之间的代码风格和结构有较大的差异(比如GAN/网络架构设计/模型压缩就是三个子领域),但是同个子领域内的代码结构大体相同。同时我发现了,当对代码结构有足够的理解之后,在看其他相似结构的代码的时候速度会快上许多。而且在尝试复现某篇论文代码的时候,采用相应领域常见的结构设计方式也会使得复现的速度加快不少。同时我发现采用同领域的代码结构可以大大加快idea的代码实现,就像自己的utils(工具包),就像现成的数学公式往里套数字一般。

于是我就把常见的一些代码结构总结了一下,相似结构的代码和论文我之后总结完会附在下面(可以加深理解)。


  1. 压缩模型

模型压缩大致可以分三种:

  • Logits-based Knowledge
  • Relation-based Knowledge
  • Feature-based Knowledge

其中挺多官方代码会呈现这样的结构(特别是最新的一些论文),同时一些比较比较早之前的文章(比如fitnet)虽然官方代码没有给出这样的结构,但是思想的差不多,也就是说他们的代码也是按照这个思路写的,只不过存在耦合过高的之类的问题(你乐意的话完全可以很简单的改写成下面的结构)。

结构图以及解析:

d2c044ce5278ff28e4813ed4a561af24.png

实际代码案例以及模版:

等我更新,绝对不鸽[Doge]........


2. 网络设计


3. GAN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值