《Explaining and harnessing adversarial examples》以及《Comprehensive Privacy Analysis of Deep Learning》

本文探讨了对抗样本的线性解释及其在FGSM算法中的应用,展示了对抗样本的泛化性和对抗训练对模型鲁棒性的影响。此外,还分析了深度学习模型在独立学习和联邦学习中的隐私泄露问题,提出了白盒攻击条件下的推理攻击方法。
摘要由CSDN通过智能技术生成

本文关于快速梯度标记方法(FGSM)以及解释了对抗样本的存在性《Explaining and harnessing adversarial examples》、推理攻击领域关于深度学习的隐私性的全面分析《Comprehensive Privacy Analysis of Deep Learning》。

 

1. 《Explaining and harnessing adversarial examples》

本文是一篇对抗样本领域的早期论文,其主要贡献是关于对抗样本的存在性作出了线性解释,基于这种线性解释提出了一种对抗样本构造方法,并对于对抗样本的泛化性进行了研究,指出了一种通过构造对抗样本来进行训练的方法。

     1.1 对抗样本存在性

           1.1.1 对抗样本存在性的线性解释

          由于一般数码图像的精度有限,每个像素点的大小通常为8bits,意味着它抛弃了所有低于1/255精度一下的信息。正因为精度有限,如果在构造对抗样本时给原始样本增加一个扰动,且该扰动比最小精度还小,那么就会导致分类器无法将原始样本与对抗样本区分开。

          对于上述描述中,增加扰动的限制条件可以用数学描述:

          此式中ε是一个小到会被检测器忽略的值。

          而对抗样本的构造可以简化为下式:

         

          其中表示权重向量

          此式表明增加扰动使激活过程增加了,而我们能够通过来将干扰最大化。

          假设权重向量个维度,且权重平均值为,那么激活过程会增加,可以看出该增加量随着维度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值