《Universal adversarial perturbations》文献阅读笔记

本文介绍了《Universal adversarial perturbations》中的通用扰动构造方法,该方法针对深度学习模型,能对同一分布的样本产生使模型误分类的扰动。算法核心思想在于寻找最小扰动,使图像远离决策边界,实验表明其具有良好的泛化和黑盒攻击能力。后续研究中,对该方法进行了改进,如GDUAP、AAA、NAG等,但直接应用于图像检索仍具挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文关于介绍关于通用扰动的《Universal adversarial perturbations》。

 

1. 《Universal adversarial perturbations》

本文介绍了一种通用(Universal)扰动的构造方法,攻击方只需要对所有同一分布的样本添加该通用算法下的扰动,就能实现对抗样本构造。即不用像之前的方法那样,要针对每一个样本进行梯度计算以求得扰动。

 

     1.1 算法核心思想

     μ表示一组图片, 表示分类器,作者用下式形容算法的构造要求,即:寻找一个扰动v,使得在添加扰动后,μ内大多数图片都能被分类器误分类。(这里可以看出本次的UAP算法是一种不指定误分类目标的对抗样本构造方法)

      

     对于扰动v,作者用下式来对它进行限制:

      

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值