基于matlab的bagged trees 验证随机森林算法

博主分享了在没有Python环境下,如何利用MATLAB的baggedtrees函数完成随机森林算法的作业。通过鸢尾花数据集,展示了从数据导入到模型训练的过程,探讨了特征选择对精度的影响,并鼓励读者自行尝试和验证。
摘要由CSDN通过智能技术生成

懒得下载python,老师布置了随机森林算法的作业,网上找的答案在我的matlab上无法实现,多多少少有点问题,后来用bagged trees实现了随机森林算法。使用其他分类器也可以参考这篇文章,但我也是新手,所以有很多东西我还没尝试,后续更新吧! 

第一步:

第二步:

第三步:

第四步:

我选择 from file

数据可以在以下链接中下载,下载好之后是.data,我一般用excel整理数据并保存为.xlsx文件,我选择了鸢尾花数据集

UCI Machine Learning Repository: Data Sets

第五步:

 第六步:

点击显示更多

第七步:选择分类器

由于前两天做随机森林算法作业时遇到了麻烦,就是用这个分类器解决的,所以我选bagged trees 

 第八步:由于随机森林算法的特征也是随机的,所以选择特征选项,尝试勾除一些特征验证随机森林算法。

第九步:训练

等待

 

可以看出选取不同的特征值,对最后的精确度是有影响的,我认为这样就可以验证随机森林算法了。但也只是我的个人看法,如果不对,欢迎指教!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值