参数化曲线-微分几何

参考7.5.3 Bezier曲线举例_哔哩哔哩_bilibili

曲线的表示

显式表示

y=f(x)      优点:直观易于理解         缺点:不能表示封闭曲线,不能表示多值曲线,会出现斜率无穷大的情况

隐式表示

f(x,y)=0   优点:易于判断一个点是否在曲线上        缺点:作图不方便 表示不直观

参数方程表示

p(t)=[x(t),y(t)]

最简单的参数曲线-----直线段

p(t)=p1+(p2-p1)t \ t\in [0,1]              

优点:

1.满足几何不变行---不受坐标系变换的影响 

2.有更大的自由度来控制曲线、曲面的形状

p(t)=\begin{bmatrix}a_1t^3+a_2t^2+a_3t+a_4 \\ b_1t^3+b_2t^2+b_3t+b_4 \end{bmatrix}

3.对于非参数方程的曲线,需要对每个型值点进行几何变换;而对参数方程,可以直接对参数方程进行几何变换

4.便于处理斜率无穷大的情形,不会因此中断计算

5.易于向量和矩阵运算

参数曲线基本概念

位置矢量

p(t)=[x(t),y(t),z(t)]

切矢量

T = \frac{​{p}'(t)}{\left | {p}'(t) \right |}

曲率

刻画曲线的弯曲程度

\kappa =\lim_{\Delta s \to 0}\left | \frac{\Delta T }{\Delta s} \right |=\lim_{\Delta s \to 0}\left | \frac{\Delta \theta }{\Delta s} \right |

法矢量

 N是主法失 T是切失 B是副法失

 B = T \times N

挠率

空间曲线不但要弯曲而且还要扭曲,离开他的密切面,为了能刻画这一扭曲程度,等价于去研究密切平面的法矢量(即曲线的副法矢量)关于弧长的变化率。

挠率\tau的绝对值等于副法线方向(或密切平面)对于弧长的转动率

\left | \tau \right |=\lim_{\Delta s}\left | \frac{\Delta \theta }{\Delta s} \right |

插值

构造曲线通过给定点

拟合

构造曲线最接近给定的数据点(但是未必通过这些点)

光顺

指曲线的拐点不能太多

对于平面曲线:

1.具有二阶的几何连续性G^2

2.不存在多余的拐点和奇异点

3.曲率变化比较小

连续性

参数连续:该点的位置、一阶导数(切线)、二阶导数均相等 记为C^0 C^1 C^2

几何连续:   G^0该点的位置相等,G^1一阶导数方向相同、大小成比例,G^2是指满足G1连续的情况下,曲率相等。

 参数化

思考

过三点P0、P1和P2构造参数表示的插值多项式是唯一还是多个?

答案:无数条,因为参数t可以在[0,1]之间随便取

例如:

t_0 =0,t_1=\frac{1}{2},t_2=1 \ \ \ t_0 =0,t_1=\frac{1}{3},t_2=1

参数方程:\left\{\begin{matrix} x(t)=a_1t^2+a_2t+a_3\\ y(t)=b_1t^2+b_2t+b_3 \end{matrix}\right.

插值问题实际就是解方程组的问题,但是如果参数取的不一致的话,情况也不一样。

每个参数值t称为(knot),P0、P1和P2称为型值点(控制点)

对于一条插值曲线,型值点和参数节点有一一对于的关系,对于一组有序的型值点,所确定的一组参数分割,称之为这组型值点的参数化。

 参数化的本质:就是找一组恰当的参数t来匹配这一组不同的型值点。给定不同的型值点,就要给出不同的参数化即不同的t值,这样才使得这条曲线美观,合理

参数化常用的方法:

1.均匀参数化---参数等距分布

2.累加弦长参数化---根据长度的比例关系来确定t

3.向心参数化

参数曲线的代数和几何形式

1.代数形式 t\in [0,1]

\left\{\begin{matrix} x(t)=a_3t^3+a_2t^2+a_1t+a_0\\ y(t)=b_3t^3+b_2t^2+b_1t+b_0\\ z(t)=c_3t^3+c_2t^2+c_1t+c_0 \end{matrix}\right.  

也可以写成向量的形式

p(t)=a_3t^3+a_2t^2+a_1t+a_0

 注意:此时的a_3是向量a_3=(a_3,b_3,c_3)

确定:代数形式 改变细数,曲线如何变化是不清楚的。

2.几何形式(常用)

几何形式是利用一条曲线端点的几何性质来刻画一条曲线。所谓端点的几何性质,就是指曲线的端点位置、切向量、各阶导数等端点的信息。

对于三次参数曲线,若用其端点的位失p(0),p(1)和切失p'(0),p'(1)描述

上式就是三次Hermite(三次哈密特曲线)的几何表示形式 

几何细数是P_0,P_1,{P}'_0,{P}'_1

F_0,F_1,G_0,G_1称为调和函数(三次)

  • 6
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Matlab提供了几种参数化翼型的方法,其中两个常用的是CST方法和直接FFD方法。 CST方法是一种强大的参数化方法,可以用于生成各种可能的空气动力体的翼型。它的优点是简单、鲁棒,并且可以根据需要进行灵活的调整。通过调整CST系数,可以实现对翼型的参数化控制,从而得到不同形状的翼型。引用 直接FFD(DFFD)方法是另一种常用的参数化方法,可以用于对二维翼型实现参数化。该方法通过对翼型进行网格变形来实现参数化控制。通过调整变形网格的节点位置,可以实现对翼型的形状进行自由变换。引用 这些方法在Matlab中都有相应的源代码和示例,您可以根据自己的需求选择适合的方法,并使用相应的源代码进行参数化翼型的操作。<span class="em">1</span><span class="em">2</span> #### 引用[.reference_title] - *1* [matlab_cst参数化_翼型](https://download.csdn.net/download/wouderw/85488508)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [直接FFD(DFFD)_几何参数化方法_可以对二维翼型实现参数化_实现网格变形_matlab](https://download.csdn.net/download/m0_53407570/83982386)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值