tensorflow--将已有模型的输入改为 base64 images

tensorflow–将已有模型的输入改为 base64 images

背景

在计算机视觉方向,平时训练得到的网络一般都是图像作为输入,但是如果要部署到服务端事情就会变得不同,一般服务端接收到的图像是经过base64编码之后的数据,那么这就不能直接喂给你的模型,此时有两种解决方案:一、在服务段进行处理,先将base64转为图像再喂给你的模型,这个过程你有权限或者你的服务端同事会写代码都是可以的;二、假如你没有权限,碰巧你的服务端同事也不会写代码,那你只能把含辛茹苦训好的模型改造一番,本文就是在面对这种情况的时候总结出来的。

方法

  1. 重新训练 – 大可不必

  2. 添加前置处理即可
    tf
    代码中类别标签的映射部分如果不需要,可以删掉,这样代码会简洁很多,前处理结束之后直接导出模型即可。

    def preprocess_image(image_buffer):
      """Preprocess JPEG encoded bytes to 3D float Tensor."""
    
      # Decode the string as an RGB JPEG.
      # Note that the resulting image contains an unknown height and width
      # that is set dynamically by decode_jpeg. In other words, the height
      # and width of image is unknown at compile-time.
      # tf.io.decode_jpeg if tf.__version__ >= 2
      image = tf.image.decode_jpeg(image_buffer, channels=3)
      # After this point, all image pixels reside in [0,1)
      # until the very end, when they're rescaled to (-1, 1).  The various
      # adjust_* ops all require this range for dtype float.
      image = tf.image.convert_image_dtype(image, dtype=tf.float32)
      # Crop the central region of the image with an area containing 87.5% of
      # the original image.
      image = tf.image.central_crop(image, central_fraction=0.875)
      # Resize the image to the original height and width.
      image = tf.expand_dims(image, 0)
      image = tf.image.resize_bilinear(
          image, [FLAGS.image_size, FLAGS.image_size], align_corners=False)
      image = tf.squeeze(image, [0])
      # Finally, rescale to [-1,1] instead of [0, 1)
      image = tf.subtract(image, 0.5)
      image = tf.multiply(image, 2.0)
      return image
    
    NUM_CLASSES = 1000
    NUM_TOP_CLASSES = 5
    
    WORKING_DIR = os.path.dirname(os.path.realpath(__file__))
    SYNSET_FILE = os.path.join(WORKING_DIR, 'imagenet_lsvrc_2015_synsets.txt')
    METADATA_FILE = os.path.join(WORKING_DIR, 'imagenet_metadata.txt')
    
    
    def export():
      # Create index->synset mapping
      synsets = []
      with open(SYNSET_FILE) as f:
        synsets = f.read().splitlines()
      # Create synset->metadata mapping
      texts = {}
      with open(METADATA_FILE) as f:
        for line in f.read().splitlines():
          parts = line.split('\t')
          assert len(parts) == 2
          texts[parts[0]] = parts[1]
    
      with tf.Graph().as_default():
        # Build inference model.
        # Please refer to Tensorflow inception model for details.
    
        # Input transformation.
        serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
        feature_configs = {
            'image/encoded': tf.FixedLenFeature(
                shape=[], dtype=tf.string),
        }
        tf_example = tf.parse_example(serialized_tf_example, feature_configs)
        jpegs = tf_example['image/encoded']
        images = tf.map_fn(preprocess_image, jpegs, dtype=tf.float32)
    
        # Run inference.
        logits, _ = inception_model.inference(images, NUM_CLASSES + 1)
    
        # Transform output to topK result.
        values, indices = tf.nn.top_k(logits, NUM_TOP_CLASSES)
    
        # Create a constant string Tensor where the i'th element is
        # the human readable class description for the i'th index.
        # Note that the 0th index is an unused background class
        # (see inception model definition code).
        class_descriptions = ['unused background']
        for s in synsets:
          class_descriptions.append(texts[s])
        class_tensor = tf.constant(class_descriptions)
    
        table = tf.contrib.lookup.index_to_string_table_from_tensor(class_tensor)
        classes = table.lookup(tf.to_int64(indices))
    
        # Restore variables from training checkpoint.
        variable_averages = tf.train.ExponentialMovingAverage(
            inception_model.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)
        with tf.Session() as sess:
          # Restore variables from training checkpoints.
          ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
          if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)
            # Assuming model_checkpoint_path looks something like:
            #   /my-favorite-path/imagenet_train/model.ckpt-0,
            # extract global_step from it.
            global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
            print('Successfully loaded model from %s at step=%s.' %
                  (ckpt.model_checkpoint_path, global_step))
          else:
            print('No checkpoint file found at %s' % FLAGS.checkpoint_dir)
            return
    
          # Export inference model.
          output_path = os.path.join(
              tf.compat.as_bytes(FLAGS.output_dir),
              tf.compat.as_bytes(str(FLAGS.model_version)))
          print('Exporting trained model to', output_path)
          builder = tf.saved_model.builder.SavedModelBuilder(output_path)
    
          # Build the signature_def_map.
          classify_inputs_tensor_info = tf.saved_model.utils.build_tensor_info(
              serialized_tf_example)
          classes_output_tensor_info = tf.saved_model.utils.build_tensor_info(
              classes)
          scores_output_tensor_info = tf.saved_model.utils.build_tensor_info(values)
    
          classification_signature = (
              tf.saved_model.signature_def_utils.build_signature_def(
                  inputs={
                      tf.saved_model.signature_constants.CLASSIFY_INPUTS:
                          classify_inputs_tensor_info
                  },
                  outputs={
                      tf.saved_model.signature_constants.CLASSIFY_OUTPUT_CLASSES:
                          classes_output_tensor_info,
                      tf.saved_model.signature_constants.CLASSIFY_OUTPUT_SCORES:
                          scores_output_tensor_info
                  },
                  method_name=tf.saved_model.signature_constants.
                  CLASSIFY_METHOD_NAME))
    
          predict_inputs_tensor_info = tf.saved_model.utils.build_tensor_info(jpegs)
          prediction_signature = (
              tf.saved_model.signature_def_utils.build_signature_def(
                  inputs={'images': predict_inputs_tensor_info},
                  outputs={
                      'classes': classes_output_tensor_info,
                      'scores': scores_output_tensor_info
                  },
                  method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME
              ))
    
          legacy_init_op = tf.group(
              tf.tables_initializer(), name='legacy_init_op')
          builder.add_meta_graph_and_variables(
              sess, [tf.saved_model.tag_constants.SERVING],
              signature_def_map={
                  'predict_images':
                      prediction_signature,
                  tf.saved_model.signature_constants.
                  DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                      classification_signature,
              },
              legacy_init_op=legacy_init_op)
    
          builder.save()
          print('Successfully exported model to %s' % FLAGS.output_dir)
    
    

    tf.keras
    其实也是一样的,不过看着更简单。

    import tensorflow as tf
    	
    model_path = './checkpoint/model.h5'
    my_model = tf.keras.models.load_model(model_path)
    
    def preprocess_and_decode(img_str, new_shape=[224,224]):
        img = tf.io.decode_base64(img_str)
        img = tf.image.decode_jpeg(img, channels=3)
        img = tf.image.resize_images(img, new_shape, method=tf.image.ResizeMethod.BILINEAR, align_corners=False)
        # if you need to squeeze your input range to [0,1] or [-1,1] do it here
        return img
    InputLayer = tf.keras.Input(shape = (1,),dtype="string")
    OutputLayer = tf.keras.layers.Lambda(lambda img : tf.map_fn(lambda im : preprocess_and_decode(im[0]), img, dtype="float32"))(InputLayer)
    base64_model = tf.keras.Model(InputLayer,OutputLayer) 
    
    
    base64_input = base64_model.input
    final_output = my_model(base64_model.output)
    new_model = tf.keras.Model(base64_input,final_output)
    
    new_model.save('./base64_model/base64.h5') # # new_model.save('./base64_model/base64',save_format='tf')
    

    最后将模型导出为savedmodel格式重新上线。

结论

  • 主要是为了保持结构上的完整。
  • 但其实对预测结果的后处理(标签映射等)也是非常有必要的,掌控你能掌控的。
  • 记一个待办:这里的 tf.keras 部分缺少后处理,添加后就可以利用 new_model.save('./base64_model/base64',save_format='tf') 一步到位直接保存成 savedmodel 格式进行部署了。
    (其实我在上线的时候用了已有的 h5->pb, pb->savedmodel 的代码,在转savedmode的过程中做了与第一个例子类似的后处理,😁)
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值