pytorch loss.backword() 时间太长

文章讨论了在深度学习中,数据在进入模型前未进行深拷贝会造成的性能问题。不进行深拷贝会导致在反向传播时搜索原始数据地址,增加计算时间。解决方案是使用`clone().detach()`或`deepcopy`在数据进入模型前创建副本。示例代码展示了如何在训练循环中应用此方法,结果表明性能有显著提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直接原因是:数据在进入模型之前没有进行深拷贝

深层原因大概是:如果不进行深拷贝,在梯度反向传播过程中,要寻找原始数据的地址,这个过程非常耗时间。(直接等号是前拷贝,是将新的变量指向原来变量的地址)

解决办法:

tensor_a = tensor_b.clone().detach()

或者用deepcopy也行。

位置呢,就放到数据进入模型之前就可以。大概如下:

data = loader.get_batch('train')

data_copy = data.clone().detach()

optimizer.zero_grad()
out,loss = model(data_copy)
loss.backward()
optimizer.step()

如果data是tensor构成的字典或者list,遍历处理里面的每一项即可。

效果展示:

加之前

加之后

 效果十分显著

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值