LangChain4j入门(一)SpringBoot整合并接入Deepseek

前言

        我为什么选择 LangChain4j 框架入门AI实践?作为JAVA仔,我们肯定是希望快速上手,零语言障碍,使用熟悉的语言和框架无缝引入 LLM 能力,LangChain4j 与 Java 生态深度融合的特点正是我们需要的,另外它还有更多的优点。

        附 LangChain4j 官网地址:Introduction | LangChain4j

一、LangChain4j 的主要优点

① 与 Java 生态深度融合

        如图所见,我们可以看到 LangChain4j 官方为我们提供官方 Starter,我们只需要在配置文件中添加指定的open-api的配置,即可快速接入AI能力。

② 高度模块化与可扩展性

        按需引入组件:采用模块化设计,开发者仅需引入自己需要的 chain、memory、agent、vector store 等模块,避免臃肿依赖。

        内存管理:内置多种对话记忆(Memory)管理策略,支持短期/长期记忆持久化,方便构建多轮对话和上下文保持。

③ 企业级项目适配

        支持微服务架构(Spring Cloud等)、消息驱动(Kafka、RabbitMQ)等主流企业技术栈,可快速将 AI 能力嵌入大型系统中。

二、LangChain4j 的核心作用

① 统一模型调用接口

        定义了 LanguageModel、ChatLanguageModel、EmbeddingModel 等接口,将 OpenAI、Vertex AI、DeepSeek 等多家 LLM 提供商的调用细节封装在一致的 API 之下,使得切换或并行使用不同服务变得无缝简单。

② 链式工作流(Chains)

        提供“链”(Chains)机制,可将模型调用、提示词处理、数据转换等步骤串联为可复用的流程,助力构建复杂的多步骤 AI 应用。

③ 检索增强生成(RAG)

        内置向量化、分片、检索和嵌入管理功能,支持与 MongoDB Atlas Vector Search、ChromaDB、Pinecone、Weaviate 等向量数据库集成,实现基于语义匹配的上下文检索,再将检索结果与提示词一并发送给模型,显著提升生成质量。

④ 多种“工具”支持

        集成文档加载器(PDF、HTML、Markdown)、函数调用、流式输出、回调(Callbacks)等能力,使得 AI 系统能够灵活调用外部 API、执行计算或进行自定义逻辑。

三、同类型框架比较

特性LangChain4jSpring AI
设计初衷简化在 Java 应用中集成 LLM,提供统一 API 抽象,灵活切换 OpenAI、Vertex AI、DeepSeek 等多家模型服务。基于 Spring 生态,提供与 Spring Beans、配置、生命周期无缝结合的 AI 抽象,支持 Chat、Embedding、Text-to-Image 等多种模型调用。
核心抽象定义 ChatLanguageModelEmbeddingModelAgentChainMemory 等接口,全方位覆盖提示词、链式调用、对话记忆等场景。提供 AIChatTextToImageEmbedding 等通用接口,模型切换与调用方式保持一致,并暴露底层特性如流式(streaming)与函数调用(function calling)。
多模型支持原生支持 15+ 主流 LLM 提供商(OpenAI、Vertex AI、Anthropic、DeepSeek 等)及 15+ 向量存储(Pinecone、Chroma、Weaviate、Qdrant 等)。支持 OpenAI、Anthropic Claude、Azure OpenAI、Google Vertex AI、Groq、Mistral、Ollama 等;向量数据库通过文档读取器/写入器插件集成。
链式调用(Chains)完整实现 Chain 模式,可将提示词构建、模型调用、数据处理、工具执行串联,适用于复杂多步骤工作流。通过 Spring Bean 和装配机制,将多模型调用与处理逻辑以配置方式组装,支持自定义 Step 及流程;目前尚未提供与 LangChain 同级别的 Chain 库。
检索增强生成(RAG)内置文档分片、向量化、检索模块,可无缝对接常见向量库,构建高效 RAG 流水线。提供 ETL 风格的文档加载器、转换器、写入器,可对接多种向量库存储与检索,但需手动组装 RAG 流程。
多轮对话记忆支持短期/长期 Memory 管理,Memory 可持久化到数据库或内存中,实现对话上下文连续性。提供简单的对话上下文维护能力,更多依赖用户自行管理 Bean 作用域或外部存储,自带 Memory 方案相对轻量。
Spring 集成提供 Spring Boot Starter,一行配置自动装配 OpenAiChatModelEmbeddingStore 等 Bean;也支持 Quarkus、Helidon。与 Spring Boot 深度集成,AI 抽象即 Spring Bean,支持 @AIClient、自动配置、Properties/YAML 注入,以及 Micrometer 指标和 AOP 拦截。
可观测性 & 监控依赖用户自行引入 Micrometer、OpenTelemetry 集成示例;Quarkus 扩展提供内建 Metrics/Tracing/Dev Services。开箱即用 Micrometer 指标、Tracing 与 Auditing 支持,自动收集模型调用耗时、错误率等关键指标。
文档与社区官方文档全面(入门、示例、扩展),GitHub 社区活跃,Discord、Issue 交流及时。官方文档详尽(参考手册、Baeldung 教程、Medium 博文),Spring 社区庞大,Stack Overflow、Reddit 话题众多。

四、Spring工程整合LangChain4j

① 创建maven工程

        此处没有什么特殊的,大家可以从零创建一个新项目,也可以在现有的微服务脚手架里创建一个新的模块,我这里是使用自己的微服务脚手架,框架是开源的,如果大家没有脚手架可以直接使用我的,文末我会把仓库链接贴出来,我的脚手架的SpringBoot版本是3.2.0。

        唯一需要注意的是,我使用的 LangChain4j 版本是最新版本,根据官方文档我们必须使用JDK17,这是最低的要求。

(1)父工程

完整父工程POM如下:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xmlns="http://maven.apache.org/POM/4.0.0"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.ceair</groupId>
    <artifactId>eal-pm</artifactId>
    <version>1.0.0</version>
    <description>父工程,定义依赖</description>
    <modules>
        <module>pm-common</module>
        <module>pm-doc-common</module>
        <module>pm-authorization</module>
        <module>pm-gateway</module>
        <module>pm-system</module>
        <module>pm-log</module>
        <module>pm-base</module>
        <module>pm-process</module>
        <module>pm-langChain4j</module>
    </modules>

    <!--只定义版本-->
    <packaging>pom</packaging>

    <!--配置项-->
    <properties>
        <maven.compiler.source>17</maven.compiler.source>
        <maven.compiler.target>17</maven.compiler.target>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <springboot.version>3.2.0</springboot.version>
        <springcloud.version>2023.0.0</springcloud.version>
        <springcloudalibaba.version>2023.0.0.0-RC1</springcloudalibaba.version>
        <mysql.version>8.0.33</mysql.version>
        <mybatis-plus.version>3.5.9</mybatis-plus.version>
        <hutool.version>5.8.22</hutool.version>
        <lombok.version>1.18.24</lombok.version>
        <redis.version>3.1.5</redis.version>
        <mapstruct.version>1.5.5.Final</mapstruct.version>
        <springdoc.version>2.6.0</springdoc.version>
        <!-- SpringDoc-OpenApi版本号 -->
        <spring-doc.version>2.2.0</spring-doc.version>
        <flowable.version>7.1.0</flowable.version>
        <!-- langchain4j版本号 -->
        <langchain4j.version>1.0.0-beta4</langchain4j.version>
    </properties>

    <!--dependencyManagement不会传递-->
    <dependencyManagement>
        <dependencies>
            <!--springboot-->
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-dependencies</artifactId>
                <version>${springboot.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>

            <!--spring cloud-->
            <dependency>
                <groupId>org.springframework.cloud</groupId>
                <artifactId>spring-cloud-dependencies</artifactId>
                <version>${springcloud.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>

            <!--spring cloud alibaba-->
            <dependency>
                <groupId>com.alibaba.cloud</groupId>
                <artifactId>spring-cloud-alibaba-dependencies</artifactId>
                <version>${springcloudalibaba.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>

            <!--引入langchain4j依赖管理清单-->
            <dependency>
                <groupId>dev.langchain4j</groupId>
                <artifactId>langchain4j-bom</artifactId>
                <version>${langchain4j.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>

            <!--lombok-->
            <dependency>
                <groupId>org.projectlombok</groupId>
                <artifactId>lombok</artifactId>
                <version>${lombok.version}</version>
            </dependency>

            <!--mysql-->
            <dependency>
                <groupId>mysql</groupId>
                <artifactId>mysql-connector-java</artifactId>
                <version>${mysql.version}</version>
            </dependency>

            <!--redis-->
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-starter-data-redis</artifactId>
                <version>${redis.version}</version>
            </dependency>

            <!--mybatis plus-->
            <dependency>
                <groupId>com.baomidou</groupId>
                <artifactId>mybatis-plus-spring-boot3-starter</artifactId>
                <version>${mybatis-plus.version}</version>
            </dependency>
            <dependency>
                <groupId>com.baomidou</groupId>
                <artifactId>mybatis-plus-jsqlparser</artifactId>
                <version>${mybatis-plus.version}</version>
            </dependency>

            <!--hutool-->
            <dependency>
                <groupId>cn.hutool</groupId>
                <artifactId>hutool-all</artifactId>
                <version>${hutool.version}</version>
            </dependency>

            <!--mapstruct-->
            <dependency>
                <groupId>org.mapstruct</groupId>
                <artifactId>mapstruct</artifactId>
                <version>${mapstruct.version}</version>
            </dependency>
            <dependency>
                <groupId>org.mapstruct</groupId>
                <artifactId>mapstruct-processor</artifactId>
                <version>${mapstruct.version}</version>
            </dependency>

            <!-- 适用于webmvc的SpringDoc依赖 -->
            <dependency>
                <groupId>org.springdoc</groupId>
                <artifactId>springdoc-openapi-starter-webmvc-ui</artifactId>
                <version>${spring-doc.version}</version>
            </dependency>

            <!-- 适用于webflux的SpringDoc依赖 -->
            <dependency>
                <groupId>org.springdoc</groupId>
                <artifactId>springdoc-openapi-starter-webflux-ui</artifactId>
                <version>${spring-doc.version}</version>
            </dependency>

            <!-- flowable -->
            <dependency>
                <groupId>org.flowable</groupId>
                <artifactId>flowable-spring-boot-starter</artifactId>
                <version>${flowable.version}</version>
            </dependency>
        </dependencies>
    </dependencyManagement>

    <repositories>
        <repository>
            <id>public</id>
            <name>aliyun nexus</name>
            <url>https://maven.aliyun.com/repository/public</url>
            <releases>
                <enabled>true</enabled>
            </releases>
        </repository>
    </repositories>

    <pluginRepositories>
        <pluginRepository>
            <id>public</id>
            <name>aliyun nexus</name>
            <url>https://maven.aliyun.com/repository/public</url>
            <releases>
                <enabled>true</enabled>
            </releases>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </pluginRepository>
    </pluginRepositories>

</project>

(2)子模块

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>com.ceair</groupId>
        <artifactId>eal-pm</artifactId>
        <version>1.0.0</version>
    </parent>

    <artifactId>pm-langChain4j</artifactId>
    <packaging>pom</packaging>

    <name>pm-langChain4j</name>
    <modules>
        <module>langChain4j-api</module>
        <module>langChain4j-server</module>
    </modules>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>

    </dependencies>
</project>

(3)子模块的API模块

        这里只是初始化一下,以备后续给其他服务提供Fegin接口的能力。

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>com.ceair</groupId>
        <artifactId>pm-langChain4j</artifactId>
        <version>1.0.0</version>
    </parent>

    <artifactId>langChain4j-api</artifactId>
    <packaging>jar</packaging>

    <name>langChain4j-api</name>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>

    </dependencies>

</project>

(4)子模块的Server模块

        提供正式的服务模块,这里需要集成 LangChain4j 的 Starter。

        补充说明:pm-common/pm-doc-common基础依赖,是本脚手架的基础模块,提供了mysql;mongodb;Spring Authorization Server资源服务;SpringBoot/cloud/cloudalibaba集成管理;kafka;mybatis-plus;SpringDoc-openAPI接口文档等基础服务和配置。

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>com.ceair</groupId>
        <artifactId>pm-langChain4j</artifactId>
        <version>1.0.0</version>
    </parent>

    <artifactId>langChain4j-server</artifactId>
    <packaging>jar</packaging>

    <name>langChain4j-server</name>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>
        <!--pm-common-->
        <dependency>
            <groupId>com.ceair</groupId>
            <artifactId>pm-common</artifactId>
            <version>${project.version}</version>
        </dependency>

        <!--pm-doc-common-->
        <dependency>
            <groupId>com.ceair</groupId>
            <artifactId>pm-doc-common</artifactId>
            <version>${project.version}</version>
        </dependency>

        <!-- langchain4j -->
        <dependency>
            <groupId>dev.langchain4j</groupId>
            <artifactId>langchain4j-open-ai-spring-boot-starter</artifactId>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <executions>
                    <execution>
                        <goals>
                            <goal>repackage</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>

② 创建配置文件

        由于本服务集成了基础工程和 LangChain4j,所以需要配置的东西比较多,大家可以根据我配置文件中的注释替换成自己可用的中间件环境。

server:
  # 设置资源服务器端口
  port: 9004
spring:
  profiles:
    active: dev
  application:
    name: pm-langchain4j

# 本地开发配置
---
spring:
  config:
    activate:
      on-profile: dev
  datasource:
    driver-class-name: com.mysql.cj.jdbc.Driver
    # 这里需要配置你自己的数据库连接信息
    url: jdbc:mysql://192.168.30.129:3306/pm-langChain4j?serverTimezone=UTC&userUnicode=true&characterEncoding=utf-8
    username: root
    password: 123456
  data:
    redis:
      # 这里需要配置你自己的缓存连接信息
      host: 192.168.30.129
      port: 6379
      password: 123456
    mongodb:
      # 这里需要配置你自己的数据库连接信息
      uri: mongodb://root:123456@192.168.30.129:27017/pm-langChain4j?authSource=admin
  security:
    oauth2:
      # 资源服务器配置
      resourceserver:
        jwt:
          # Jwt中claims的iss属性,也就是jwt的签发地址,即认证服务器的根路径
          # 资源服务器会进一步的配置,通过该地址获取公钥以解析jwt
          issuer-uri: http://127.0.0.1:8080
  cloud:
    nacos:
      # 这里需要配置你自己的nacos连接信息
      serverAddr: 192.168.30.129:8848
      username: nacos
      password: nacos
      discovery:
        namespace: af54b638-b927-4d97-bfc5-e9f127dd92df
  kafka:
    # 这里需要配置你自己的mq连接信息
    bootstrap-servers: 192.168.30.129:9092
    producer:
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer

# Mybatis-Plus 配置
mybatis-plus:
  # 扫描mapper文件
  mapper-locations:
    - classpath:mapper/*.xml
  configuration:
    log-impl: org.apache.ibatis.logging.stdout.StdOutImpl

#kafka消息相关
syslog:
  kafka:
    topic: sys-log-topic

# ------------以下内容可改为公共配置------------
# SpringDoc自定义配置
custom:
  info:
    title: ${spring.application.name}-api
    version: 1.0.0
    description: 这是一个使用SpringDoc生成的在线文档.
    terms-of-service: http://127.0.0.1:5173
    gateway-url: http://127.0.0.1:9999/${spring.application.name}
  license:
    name: Apache 2.0
  security:
    name: Authenticate
    token-url: http://127.0.0.1:8080/oauth2/token
    authorization-url: http://127.0.0.1:8080/oauth2/authorize

#flowable配置
flowable:
  # 异步执行器主要用于处理那些耗时的任务,例如发送电子邮件、生成报告、调用外部服务等。这些任务可以在后台线程池中异步执行,而不会阻塞主线程或影响用户的响应时间
  async-executor-activate: false
  # 是否开启数据库自动升级
  database-schema-update: true

#open-ai相关配置
langchain4j:
  open-ai:
    chat-model:
      # 这里需要你自己的 api-key
      api-key: **************************
      model-name: deepseek-chat
      log-requests: true
      log-responses: true
      base-url: https://api.deepseek.com

#日志级别
logging:
  level:
    root: debug

③ 申请deepseek的 api-key

        申请地址:DeepSeek 开放平台

        创建完api-key之后,需要先充值1块钱才能使用,不过也有说可以免费试用的,我是没有找到入口,有大佬知道的话麻烦在评论区分享一下。

④ 创建主启动类

package com.ceair;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.client.discovery.EnableDiscoveryClient;

/**
 * @author wangbaohai
 * @ClassName LangChain4jResourceApplication
 * @description: LangChain4j主启动类
 * @date 2025年05月13日
 * @version: 1.0.0
 */
@SpringBootApplication
@EnableDiscoveryClient()
public class LangChain4jResourceApplication {

    public static void main(String[] args) {
        SpringApplication.run(LangChain4jResourceApplication.class, args);
    }

}

⑤ 创建测试接口

package com.ceair.controller;

import com.ceair.entity.result.Result;
import dev.langchain4j.model.openai.OpenAiChatModel;
import io.swagger.v3.oas.annotations.Operation;
import io.swagger.v3.oas.annotations.tags.Tag;
import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

/**
 * @author wangbaohai
 * @ClassName TestController
 * @description: 测试接口
 * @date 2025年05月13日
 * @version: 1.0.0
 */
@RestController
@RequestMapping("/api/v1/test")
@RequiredArgsConstructor
@Slf4j
@Tag(name = "测试接口", description = "测试LangChain4j功能相关接口")
public class TestController {

    private final OpenAiChatModel openAiChatModel;

    /**
     * 测试LangChain4j的deepseek功能
     * 向OpenAI模型发送预设问题并获取回答
     *
     * @return Result<String> 包含成功状态和模型回答结果的封装对象
     * 当调用成功时返回模型回答文本,失败时返回错误信息
     */
    @Operation(summary = "测试LangChain4j功能-deepseek")
    @PostMapping("/deepseek")
    public Result<String> deepseek() {
        // 向 模型 提问
        String answer = openAiChatModel.chat("请回答我你有什么用");
        return Result.success(answer);
    }

}

五、测试接口

① 启动后端服务

        这里注意,使用我的脚手架的话,需要先启动pm-authorization,再启动pm-gateway,之后服务没有顺序要求了。

② 启动前端工程

        使用yarn包管理器,需要nodejs版本号:v22.1.0

③ 验证接口

认证一下,获取权限信息,这里资源服务器没有放行测试接口白名单,所以需要认证

认证成功

获取接口结果

deepseek控制台查看扣费信息

后记

        调用Deepseek是比较好,但是如果大量使用,还是有费用压力的,LangChain4j支持接入本地 olloma部署的大模型,下一篇文章我们来探讨一下如何实现,如果生产有实力的话本地部署还是比较有性价比的。

        我们还是以往的,一篇文章一个代码分支,本文的前后端工程的分支都是 LangChain4j-1。

后端工程仓库:后端工程

前端工程仓库:前端工程

数据集介绍:野生动物与家畜多目标检测数据集 数据集名称:野生动物与家畜多目标检测数据集 数据规模: - 训练集:1,540张图片 - 验证集:377张图片 - 测试集:316张图片 分类类别: Brown-bear(棕熊)、Chicken(鸡)、Fox(狐狸)、Hedgehog(刺猬)、Horse(马)、Mouse(老鼠)、Sheep(绵羊)、Snake(蛇)、Turtle(龟)、Rabbit(兔)及通用object(物体)共11个类别 标注格式: YOLO格式标注,包含归化坐标与类别索引,支持目标检测模型训练 数据特性: 涵盖航拍与地面视角,包含动物个体及群体场景,适用于复杂环境下的多目标识别 农业智能化管理: 通过检测家畜(鸡/马/绵羊等)数量及活动状态,辅助畜牧场自动化管理 生态监测系统: 支持野生动物(棕熊/狐狸/刺猬等)识别与追踪,用于自然保护区生物多样性研究 智能安防应用: 检测农场周边危险动物(蛇/狐狸),构建入侵预警系统 动物行为研究: 提供多物种共存场景数据,支持动物群体交互行为分析 高实用性标注体系: - 精细标注包含动物完整轮廓的边界框 - 特别区分野生动物与家畜类别,支持跨场景迁移学习 多维度覆盖: - 包含昼间/复杂背景/遮挡场景 - 涵盖陆地常见中小型动物与禽类 - 提供通用object类别适配扩展需求 工程适配性强: - 原生YOLO格式适配主流检测框架(YOLOv5/v7/v8等) - 验证集与测试集比例科学,支持可靠模型评估 生态价值突出: - 同步覆盖濒危物种(龟类)与常见物种 - 支持生物多样性保护与农业生产的双重应用场景
内容概要:本文档详细介绍了Python实现TSO-ELM(金枪鱼群优化算法优化极限学习机)多输入单输出回归预测的项目实例。极限学习机(ELM)作为种快速训练的前馈神经网络算法,虽然具有训练速度快、计算简单等优点,但也存在局部最优解和参数敏感性的问题。金枪鱼群优化算法(TSO)通过模拟金枪鱼群体觅食行为,具有较强的全局搜索能力。将TSO与ELM结合形成的TSO-ELM模型,可以优化ELM的输入层和隐藏层之间的权重,提高回归预测的准确性。项目包括数据预处理、TSO优化、ELM回归模型训练和预测输出四个主要步骤,提供了详细的代码示例。; 适合人群:对机器学习、优化算法有定了解的数据科学家、算法工程师和研究人员,特别是那些希望深入理解智能优化算法在回归预测任务中的应用的人群。; 使用场景及目标:① 提升ELM在多输入单输出回归预测中的性能,特别是在处理非线性问题时的预测精度;② 解决ELM中的局部最优解和参数敏感性问题;③ 优化ELM的隐层权重和偏置值,提高模型的表达能力和预测能力;④ 在金融、气象、能源、医疗、交通等领域提供更准确的预测模型。; 阅读建议:本文档不仅提供了理论解释,还包含详细的代码实现,建议读者在阅读过程中结合代码进行实践,理解TSO-ELM模型的工作原理,尝试调整参数以优化预测效果。同时,读者应关注TSO算法在高维复杂问题中的应用挑战,思考如何改进优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值