【nlp学习】ch8.Transformer笔记\pytorch实现

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

参考资料


提示:以下是本篇文章正文内容,下面案例可供参考

1.Transformer简介

Transformer 和 LSTM 的最大区别,就是 LSTM 的训练是迭代的、串行的,必须要等当前字处理完,才可以处理下一个字。而 Transformer 的训练时并行的,即所有字是同时训练的,这样就大大增加了计算效率。

Transformer是一个encoder-decoder结构,编码器和解码器都是n层的,整个过程是一个线性的结构,一个encoder的输出作为下一个encoder的输入;当到了最后一个encoder的时候,再把最后一个encoder的输出传给decoder。

Transformer的结构与seq2seq相似,但是它没有用到任何循环神经网络。
在这里插入图片描述

2.Encoder

Positional Encoding

在这里插入图片描述
因为transformer没有用到任何循环神经网络,而RNN是一种天然的时间序列(一个字接一个字的顺序进行),如果直接编码之后便进行输入,则没有获取到句子当中各个词的位置关系,因此我们引入位置编码。

输入的X在embedding层进行维度变换,由[batch_size,sequence length]变换为[batch_size,sequence length,embedding dimension]词向量可以由训练得到,或者是调用预训练的词向量都是可以的,而位置编码,在transformer模型中,是不训练的【在Bert中是可以训练的】是由一个公式来定义好的。

需要注意的是,位置编码的维度一定是和词向量的维度是相同的,否则无法进行向量相加的操作。

在这里插入图片描述
随着维度i的增大,变化越来越平缓。
在这里插入图片描述
位置编码的详细讲解:Transformer 中的 Positional Encoding
在这里插入图片描述

Self-Attention

通过embedding和position encoding之后得到x1,x2…xm(向量维度[batch_size,sequence length,embedding dimension])对于每个x,通过与三个矩阵Wk, Wq, Wv相乘,衍生出三个向量。

对于所有的字来说,乘的三个矩阵是相同的,即权重是共享的。相乘的操作相当于是做了一个线性变换,即nn.linear

  1. 首先用第一个字的查询向量q1分别与所有的字的键向量k1…km相乘,通过softmax操作,得到第一个字与所有字的相关程度。
    在这里插入图片描述
  2. 同样的操作得到a2,a3…
    在这里插入图片描述
  3. 将得到的相关程度矩阵a与v1,v2…相乘相加得到context vector
    在这里插入图片描述
  4. c1即为x1通过self-attention后的输出。
    这种方法需要一个循环遍历所有的字xi,因此我们可以把上面的向量计算转化为矩阵计算,从而一次计算出所有时刻的输出。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

Multi-Head Attention

定义多组Wq,Wk,Wv,得到多组Q,K,V来分别关注不同的上下文。
对于输入矩阵X,每一组QKV都可以得到一个输出矩阵Z。

残差连接和 Layer Normalization

残差连接
X在通过多头注意力机制后不是直接传入到全连接层,而是再次与原来的输入X相加后再传入全连接层。
这样做的好处:解决了退化问题,阻止隐模型深度太深而造成的数据特征消失的问题。

2.Decoder

decoder的输入与encoder类似,通过两个编码的操作之后,进入一个masked multi-head attention,之后经过add&norm,将输出作为Q,而encoder经过多层计算得到的输出作为K,V(K=V)以新的KQV做multi-head attention,最后经过两层的神经网络,add&norm,再经过linear改变维度,经过softmax得到最终的输出。

注意,在神经网络之后得到的输出(而不是linear后的输出)会作为下一次的输入。

Masked Multi-head Attention

代码

# %%
# code by Tae Hwan Jung(Jeff Jung) @graykode, Derek Miller @dmmiller612
# Reference : https://github.com/jadore801120/attention-is-all-you-need-pytorch
#           https://github.com/JayParks/transformer
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt

# S: Symbol that shows starting of decoding input
# E: Symbol that shows starting of decoding output
# P: Symbol that will fill in blank sequence if current batch data size is short than time steps

def make_batch(sentences):
    input_batch = [[src_vocab[n] for n in sentences[0].split()]]
    output_batch = [[tgt_vocab[n] for n in sentences[1].split()]]
    target_batch = [[tgt_vocab[n] for n in sentences[2].split()]]
    return torch.LongTensor(input_batch), torch.LongTensor(output_batch), torch.LongTensor(target_batch)

def get_sinusoid_encoding_table(n_position, d_model):
    def cal_angle(position, hid_idx):
        return position / np.power(10000, 2 * (hid_idx // 2) / d_model)
    def get_posi_angle_vec(position):
        return [cal_angle(position, hid_j) for hid_j in range(d_model)]

    sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])
    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i从0开始,每隔两个,即0,2,4,6.。。双数位
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1从1开始,每隔两个,即1,3,5.。。单数位
    return torch.FloatTensor(sinusoid_table)

def get_attn_pad_mask(seq_q, seq_k):#这个函数主要是将input_ids中补0的位置掩盖掉,让他们不参与后面的运算,加快运算速度。
    batch_size, len_q = seq_q.size()
    batch_size, len_k = seq_k.size()
    # eq(zero) is PAD token
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)  # batch_size x 1 x len_k(=len_q), one is masking
    return pad_attn_mask.expand(batch_size, len_q, len_k)  # batch_size x len_q x len_k

def get_attn_subsequent_mask(seq):
    attn_shape = [seq.size(0), seq.size(1), seq.size(1)]# attn_shape: [batch_size, tgt_len, tgt_len]
    subsequent_mask = np.triu(np.ones(attn_shape), k=1)#生成一个上三角矩阵
    subsequent_mask = torch.from_numpy(subsequent_mask).byte()
    return subsequent_mask

class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()

    def forward(self, Q, K, V, attn_mask):
        ## 输入进来的维度分别是 [batch_size x n_heads x len_q x d_k]  K: [batch_size x n_heads x len_k x d_k]  V: [batch_size x n_heads x len_k x d_v]

        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
        #面这个就是用到了我们之前重点讲的attn_mask,把被mask的地方置为无限小,softmax之后基本就是0,对q的单词不起作用
        scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one.
        attn = nn.Softmax(dim=-1)(scores)#softmax函数按横行来做
        context = torch.matmul(attn, V)
        return context, attn

class MultiHeadAttention(nn.Module):
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        self.W_Q = nn.Linear(d_model, d_k * n_heads)
        self.W_K = nn.Linear(d_model, d_k * n_heads)
        self.W_V = nn.Linear(d_model, d_v * n_heads)
        self.linear = nn.Linear(n_heads * d_v, d_model)
        self.layer_norm = nn.LayerNorm(d_model)

    def forward(self, Q, K, V, attn_mask):
        # q: [batch_size x len_q x d_model], k: [batch_size x len_k x d_model], v: [batch_size x len_k x d_model]
        residual, batch_size = Q, Q.size(0)
        # (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
        #当view()参数不止一个,且其中一个为-1时,则-1的作用相当于占位符,其大小由torch根据矩阵元素个数和其他维大小来自动计算
        q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # q_s: [batch_size x n_heads x len_q x d_k]
        k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # k_s: [batch_size x n_heads x len_k x d_k]
        v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2)  # v_s: [batch_size x n_heads x len_k x d_v]
        ## 输入进行的attn_mask形状是 batch_size x len_q x len_k,然后经过下面这个代码得到 新的attn_mask : [batch_size x n_heads x len_q x len_k],就是把pad信息重复了n个头上

        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size x n_heads x len_q x len_k]

        # context: [batch_size x n_heads x len_q x d_v], attn: [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
        context, attn = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
        context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) # context: [batch_size x len_q x n_heads * d_v]
        output = self.linear(context)
        return self.layer_norm(output + residual), attn # output: [batch_size x len_q x d_model]

class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super(PoswiseFeedForwardNet, self).__init__()
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
        self.layer_norm = nn.LayerNorm(d_model)

    def forward(self, inputs):
        residual = inputs # inputs : [batch_size, len_q, d_model]
        output = nn.ReLU()(self.conv1(inputs.transpose(1, 2)))
        output = self.conv2(output).transpose(1, 2)
        return self.layer_norm(output + residual)

## 5. EncoderLayer :包含两个部分,多头注意力机制和前馈神经网络
class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()#前馈神经网络就是全连接层组成的


    def forward(self, enc_inputs, enc_self_attn_mask):
        enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V此处enc_inputs传了三次,分别与wq,wk,wv做运算的带
        enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size x len_q x d_model]
        return enc_outputs, attn

class DecoderLayer(nn.Module):
    def __init__(self):
        super(DecoderLayer, self).__init__()
        self.dec_self_attn = MultiHeadAttention()
        self.dec_enc_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
        dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
        dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
        dec_outputs = self.pos_ffn(dec_outputs)
        return dec_outputs, dec_self_attn, dec_enc_attn

class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        self.src_emb = nn.Embedding(src_vocab_size, d_model)
        self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(src_len+1, d_model),freeze=True)#因为位置编码是公式计算的,不参与反向传播,因此在这里是“freeze”
        self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])

    def forward(self, enc_inputs): # enc_inputs : [batch_size x source_len]
        enc_outputs = self.src_emb(enc_inputs) + self.pos_emb(torch.LongTensor([[1,2,3,4,0]]))
        enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)
        enc_self_attns = []
        for layer in self.layers:
            enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
            enc_self_attns.append(enc_self_attn)
        return enc_outputs, enc_self_attns

class Decoder(nn.Module):
    def __init__(self):
        super(Decoder, self).__init__()
        self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)
        self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(tgt_len+1, d_model),freeze=True)
        self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])

    def forward(self, dec_inputs, enc_inputs, enc_outputs): # dec_inputs : [batch_size x target_len]
        dec_outputs = self.tgt_emb(dec_inputs) + self.pos_emb(torch.LongTensor([[5,1,2,3,4]]))
        dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs)
        dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs)
        dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0)

        dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs)

        dec_self_attns, dec_enc_attns = [], []
        for layer in self.layers:
            dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
            dec_self_attns.append(dec_self_attn)
            dec_enc_attns.append(dec_enc_attn)
        return dec_outputs, dec_self_attns, dec_enc_attns

class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        self.encoder = Encoder()#编码层
        self.decoder = Decoder()#解码层
        self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False)
    def forward(self, enc_inputs, dec_inputs):
        enc_outputs, enc_self_attns = self.encoder(enc_inputs)
        dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
        dec_logits = self.projection(dec_outputs) # dec_logits : [batch_size x src_vocab_size x tgt_vocab_size]
        return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns

def showgraph(attn):
    attn = attn[-1].squeeze(0)[0]
    attn = attn.squeeze(0).data.numpy()
    fig = plt.figure(figsize=(n_heads, n_heads)) # [n_heads, n_heads]
    ax = fig.add_subplot(1, 1, 1)
    ax.matshow(attn, cmap='viridis')
    ax.set_xticklabels(['']+sentences[0].split(), fontdict={'fontsize': 14}, rotation=90)
    ax.set_yticklabels(['']+sentences[2].split(), fontdict={'fontsize': 14})
    plt.show()

if __name__ == '__main__':
    sentences = ['ich mochte ein bier P', 'S i want a beer', 'i want a beer E']

    # Transformer Parameters
    # Padding Should be Zero
    src_vocab = {'P': 0, 'ich': 1, 'mochte': 2, 'ein': 3, 'bier': 4}
    src_vocab_size = len(src_vocab)

    tgt_vocab = {'P': 0, 'i': 1, 'want': 2, 'a': 3, 'beer': 4, 'S': 5, 'E': 6}
    number_dict = {i: w for i, w in enumerate(tgt_vocab)}
    tgt_vocab_size = len(tgt_vocab)

    src_len = 5 # length of source
    tgt_len = 5 # length of target

    d_model = 512  # Embedding Size
    d_ff = 2048  # FeedForward dimension
    d_k = d_v = 64  # dimension of K(=Q), V
    n_layers = 6  # number of Encoder of Decoder Layer
    n_heads = 8  # number of heads in Multi-Head Attention

    model = Transformer()

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(), lr=0.001)#源代码使用的是Adam,运行之后感觉效果不好,故改用SGD

    enc_inputs, dec_inputs, target_batch = make_batch(sentences)

    for epoch in range(20):
        optimizer.zero_grad()
        outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs)
        loss = criterion(outputs, target_batch.contiguous().view(-1))
        print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
        loss.backward()
        optimizer.step()

    # Test
    predict, _, _, _ = model(enc_inputs, dec_inputs)
    predict = predict.data.max(1, keepdim=True)[1]
    print(sentences[0], '->', [number_dict[n.item()] for n in predict.squeeze()])

    print('first head of last state enc_self_attns')
    showgraph(enc_self_attns)

    print('first head of last state dec_self_attns')
    showgraph(dec_self_attns)

    print('first head of last state dec_enc_attns')
    showgraph(dec_enc_attns)
ich mochte ein bier P -> ['i', 'want', 'a', 'beer', 'E']#翻译结果

first head of last state enc_self_attns:
在这里插入图片描述
first head of last state dec_self_attns:
在这里插入图片描述
first head of last state dec_enc_attns:
在这里插入图片描述

推荐阅读:
【NLP】Transformer
TRANSFORMERS FROM SCRATCH

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Transformer是一种基于自注意力机制的序列到序列模型,由于其在机器翻译、文本生成和问答任务中的良好表现,成为了自然语言处理领域中一个非常受欢迎的模型。PyTorch是一种非常流行的深度学习框架,它不仅易于使用,而且非常灵活,因此,PyTorchTransformer实现备受关注。 在PyTorch中,我们可以使用torch.nn库中的Transformer类来实现Transformer模型。该类封装了Transformer的核心组件,包括多头自注意力机制、前向网络和位置编码器等组件,并提供了许多可调参数和模型超参数,以允许用户使用各种各样的Transformer变种。 具体来说,PyTorch中的Transformer可以通过以下步骤实现: 1. 首先,我们需要定义Transformer模型的输入和输出,即源语言和目标语言的词嵌入(Embedding)和位置编码(Position Encoding)矩阵。在PyTorch中,词嵌入层可以使用torch.nn.Embedding类实现,而位置编码矩阵可以使用自定义函数实现。 2. 接下来,我们需要定义Transformer的核心组件。该组件包括多头自注意力机制(Multi-Head Attention)、前向网络(Feed-Forward Network)和残差连接(Residual Connection)等。在PyTorch中,这些组件可以通过torch.nn库中提供的各种类和函数来实现。 3. 然后,我们需要将这些组件组合成完整的Transformer模型。在PyTorch中,我们可以使用nn.Sequential类将各个组件按照一定的顺序连接起来,或者使用nn.ModuleList类将各个组件存储在一个列表中,以便更好地控制模型的逻辑结构。 4. 最后,我们可以使用torch.optim类中提供的各种优化器(Optimizer)和损失函数(Loss Function)来训练和评估模型。 总的来说,PyTorchTransformer实现非常灵活和易于理解,这使得用户能够自由探索和学习Transformer模型的运作原理和优化方法。随着人们对自然语言处理任务的需求不断增加,PyTorchTransformer实现无疑将继续成为许多研究人员和开发者的首选工具。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值