【ANSYS Workbench 学习笔记】单自由度弹簧阻尼系统理论推导与有限元验证:自由振动 | 受迫振动 | 共振 | 模态计算 | 谐响应 | 瞬态动力学

💡 简介:通过动力学基本定律建立基本动力学模型,求解自由振动与受迫振动下的系统响应,结合有限元分析软件,模拟上述工况并对比两种方式的求解结果。
💡 软件:Ansys Workbench 2020 R2
💡 模块:Modal (模态技术)、Harmonic Response (谐响应)、Transient Structural (瞬态动力学)
💡 仓库https://gitee.com/npc-gitee/simulation 🚀
🔎 如理解有误,望不吝指正,感谢。

一、振动微分方程求解

1.1、物体自由振动的微分方程

图1所示为单自由度弹簧阻尼系统(自由振动),其中物体的质量为 m m m,坐标原点取其质心位置,向上为正,垂直位移为 x x x(若物体位于平衡位置的正方向,位移 x x x为正,若物体位于平衡位置的负方向,位移 x x x为负),弹簧刚度系数为 k k k,阻尼为 c c c,不计弹簧自重。

在这里插入图片描述

图1. 单自由度弹簧阻尼系统(自由振动)


弹簧力和阻尼力的方向始终与位移 x x x 的方向相反:当 x x x 为正,即方向为正方向,则 − k x -kx kx − c x ˙ -c\dot{x} cx˙ 为负,即力的方向为负方向,当 x x x 为负,即方向为负方向,则 − k x -kx kx − c x ˙ -c\dot{x} cx˙ 为正,即力的方向为正方向;

由动力学基本定律: F = m a F=ma F=ma,可得:
m x ¨ = − k x − c x ˙ m\ddot{x}=-kx-c\dot{x} mx¨=kxcx˙

结合初始条件,整理得基本动力学方程: { m x ¨ + c x ˙ + k x = 0 x ( 0 ) = x 0 ,     x ˙ ( 0 ) = x ˙ 0 (1-1-1) \begin{cases}m\ddot{x}+c\dot{x}+kx=0\\x(0)=x_0,\,\,\,\dot{x}(0)=\dot{x}_0\end{cases}\tag{1-1-1} {mx¨+cx˙+kx=0x(0)=x0,x˙(0)=x˙0(1-1-1)

将方程两端除以 m m m,得:
x ¨ + c m x ˙ + k m x = 0 (1-1-2) \ddot{x}+\dfrac{c}{m}\dot{x}+\dfrac{k}{m}x=0\tag{1-1-2} x¨+mcx˙+mkx=0(1-1-2)

式中,令 c m = 2 n \frac{c}{m}=2n mc=2n n n n 称为阻尼常量,令 k m = ω 0 2 \frac{k}{m}=\omega_0^2 mk=ω02 ω 0 \omega_0 ω0 称为无阻尼固有频率(常量),式(1-1-2)进一步修改为: x ¨ + 2 n x ˙ + ω o 2 x = 0 (1-1-3) \ddot{x}+2n\dot{x}+\omega_o^2x=0\tag{1-1-3} x¨+2nx˙+ωo2x=0(1-1-3)

为什么 ω 0 \omega_0 ω0 称为无阻尼固有频率 ?(见下文) 🚀

式(1-1-3)为二阶常系数齐次线性微分方程。

定理:设 x ( t ) = x 1 ( t ) x(t)=x_1(t) x(t)=x1(t) x ( t ) = x 2 ( t ) x(t)=x_2(t) x(t)=x2(t) 是方程(1)的两个解,那么,对于任何常数 C 1 C_1 C1 C 2 C_2 C2 x ( t ) = C 1 x 1 ( t ) + C 2 x 2 ( t ) x(t)=C_1x_1(t)+C_2x_2(t) x(t)=C1x1(t)+C2x2(t) 仍然是(1)的解。

由此定理可知,如果能找到方程(1-1-3)的两个解 x 1 ( t ) x_1(t) x1(t) x 2 ( t ) x_2(t) x2(t),且 x 1 ( t ) / x 2 ( t ) x_1(t)/x_2(t) x1(t)/x2(t) 不恒等于常数,那么:
x ( t ) = C 1 x 1 ( t ) + C 2 x 2 ( t ) x(t)=C_1x_1(t)+C_2x_2(t) x(t)=C1x1(t)+C2x2(t)
就是含有两个任意常数的解,因而就是方程(1-1-3)的通解。

r r r 为常数时,指数函数 x = e r t x=e^{rt} x=ert 满足 x 1 ( t ) x_1(t) x1(t) x 2 ( t ) x_2(t) x2(t),当 r r r取什么数值,使 x = e r t x=e^{rt} x=ert 满足方程(1-1-3)。

{ x ˙ ( t ) = r e r t x ¨ ( t ) = r 2 e r t \begin{cases}\dot{x}(t)=re^{rt}\\\ddot{x}(t)=r^2e^{rt}\end{cases} {x˙(t)=rertx¨(t)=r2ert

代入方程(1-1-3)得:
r 2 e r t + 2 n r e r t + ω o 2 e r t = 0 → ( r 2 + 2 n r + ω o 2 ) e r t = 0 → r 2 + 2 n r + ω o 2 = 0 r^2e^{rt}+2nre^{rt}+\omega_o^2e^{rt}=0\to (r^2+2nr+\omega_o^2)e^{rt}=0\to r^2+2nr+\omega_o^2=0 r2ert+2nrert+ωo2ert=0(r2+2nr+ωo2)ert=0r2+2nr+ωo2=0

解得:
r 1 , 2 = − n ± n 2 − ω o 2 r_{1,2}=-n±\sqrt{n^2-\omega_o^2} r1,2=n±n2ωo2

r r r 存在以下三种情况:

  • n 2 − ω o 2 > 0 n^2-\omega_o^2>0 n2ωo2>0:该情况称为大阻尼,则 x ( t ) = C 1 e r 1 t + C 2 e r 2 t x(t)=C_1e^{r_1t}+C_2e^{r_2t} x(t)=C1er1t+C2er2t
  • n 2 − ω o 2 = 0 n^2-\omega_o^2=0 n2ωo2=0:该情况下,阻尼等于临界阻尼( c = 2 k m c=2\sqrt{km} c=2km ),这时只能得到一个特解,设 x 1 ( t ) / x 2 ( t ) x_1(t)/x_2(t) x1(t)/x2(t)不恒等于常数,即 x 2 ( t ) = e r 1 t u ( t ) x_2(t)=e^{r_1t}u(t) x2(t)=er1tu(t),代入微分方程(1-1-3),解得 u ( t ) = C a + C b t u(t)=C_a+C_bt u(t)=Ca+Cbt,不妨选取 u ( t ) = t u(t)=t u(t)=t;从而微分方程(1-1-3)的通解为: x ( t ) = C 1 e r 1 t + C 2 t e r 1 t x(t)=C_1e^{r_1t}+C_2te^{r_1t} x(t)=C1er1t+C2ter1t
  • n 2 − ω o 2 < 0 n^2-\omega_o^2<0 n2ωo2<0:该情况称为小阻尼,得到一对共轭复根 α ± β i \alpha±\beta i α±βi,利用欧拉公式,得到微分方程(1-1-3)的通解为: x ( t ) = e α t ( C 1 cos ⁡ β t + C 2 sin ⁡ β t ) x(t)=e^{\alpha t}(C_1\cos\beta t+C_2\sin\beta t) x(t)=eαt(C1cosβt+C2sinβt)
    • α = − n \alpha=-n α=n β = ω o 2 − n 2 \beta=\sqrt{\omega_o^2-n^2} β=ωo2n2
    • 依据余弦函数和差公式,得:
      x ( t ) = C 1 2 + C 2 2 e − n t cos ⁡ ( ω o 2 − n 2 t + θ ) (1-1-4) x(t)=\sqrt{C_1^2+C_2^2}e^{-nt}\cos(\sqrt{\omega_o^2-n^2}t+\theta)\tag{1-1-4} x(t)=C12+C22 entcos(ωo2n2 t+θ)(1-1-4)

基于上面的公式推导,比较好说明为什么无阻尼的固有频率为 k / m \sqrt{k/m} k/m ,以及有阻尼的固有频率是什么?

什么时固有频率?固有频率通常定义为系统(在没有阻尼(或阻尼很小)的情况下)自由振荡的频率。

为什么是小阻尼情形下,那临界阻尼和大阻尼情况的呢?
由下文中临界阻尼和大阻尼情形可知,结构的振动不以振荡形式存在,而是以非振荡的形式返回到平衡位置,没有振荡特征,因此,固有频率针对于小阻尼系统。既然这样是不是存在一种结构,阻尼大于结构的临界阻尼,无论负载如何,均不会发生共振? (电流表就是利用临界阻尼特点,使指针快速到平衡位置,倒是不知道电流表会不会共振)


无阻尼是小阻尼的一种特殊情况;
三角函数的周期为 T = 2 π ω T=\frac{2\pi}{\omega} T=ω2π,则频率为 f = ω 2 π f=\frac{\omega}{2\pi} f=2πω

因此,从小阻尼情形下分析,由方程(1-1-4)知,质量块有阻尼自由振动的频率为: f = 1 2 π ω o 2 − n 2 = 1 2 π k m − c 2 4 m 2 = 1 2 π k m 1 − c 2 4 k m = 1 2 π ω o 1 − ζ 2 f=\frac{1}{2\pi}\sqrt{\omega_o^2-n^2}=\frac{1}{2\pi}\sqrt{\dfrac{k}{m}-\dfrac{c^2}{4m^2}}=\frac{1}{2\pi}\sqrt{\dfrac{k}{m}}\sqrt{1-\dfrac{c^2}{4km}}=\frac{1}{2\pi}\omega_o\sqrt{1-\zeta^2} f=2π1ωo2n2 =2π1mk4m2c2 =2π1mk 14kmc2 =2π1ωo1ζ2
式中, ζ = c 2 k m \zeta=\frac{c}{2\sqrt{km}} ζ=2km c 称为阻尼比,即阻尼除以临界阻尼;因此,有阻尼固有频率为 1 2 π ω o 1 − ζ 2 \frac{1}{2\pi}\omega_o\sqrt{1-\zeta^2} 2π1ωo1ζ2

当无阻尼情形下,即 c = 0 c=0 c=0,则 ζ = 0 \zeta=0 ζ=0,因此,无阻尼固有频率为 1 2 π ω o \frac{1}{2\pi}\omega_o 2π1ωo

以下分情形进行讨论。

1.1.1、大阻尼情形 n 2 − ω o 2 > 0 n^2-\omega_o^2>0 n2ωo2>0

该情形下,通解为: x ( t ) = C 1 e ( − n + n 2 − ω o 2 ) t + C 2 e ( − n − n 2 − ω o 2 ) t (1-1-5) x(t)=C_1e^{(-n+\sqrt{n^2-\omega_o^2})t}+C_2e^{(-n-\sqrt{n^2-\omega_o^2})t}\tag{1-1-5} x(t)=C1e(n+n2ωo2 )t+C2e(nn2ωo2 )t(1-1-5)

t = 0 t=0 t=0 x ( 0 ) = x 0 x(0)=x_0 x(0)=x0 x ˙ ( 0 ) = x ˙ 0 \dot{x}(0)=\dot{x}_0 x˙(0)=x˙0,代入方程(1-1-5)及其一阶导数方程,得:
{ x 0 = C 1 + C 2 x ˙ 0 = C 1 ( − n + n 2 − ω o 2 ) + C 2 ( − n − n 2 − ω o 2 ) \begin{cases}x_0=C_1+C_2\\\dot{x}_0=C_1(-n+\sqrt{n^2-\omega_o^2})+C_2(-n-\sqrt{n^2-\omega_o^2})\end{cases} {x0=C1+C2x˙0=C1(n+n2ωo2 )+C2(nn2ωo2 )

解得:
{ C 1 = x ˙ 0 − x 0 ( − n − n 2 − ω o 2 ) 2 n 2 − ω o 2 C 2 = − x 0 ˙ + x 0 ( − n + n 2 − ω o 2 ) 2 n 2 − ω o 2 \begin{cases}C_1=\dfrac{\dot{x}_0-x_0(-n-\sqrt{n^2-\omega_o^2})}{2\sqrt{n^2-\omega_o^2}}\\\\C_2=\dfrac{-\dot{x_0}+x_0(-n+\sqrt{n^2-\omega_o^2})}{2\sqrt{n^2-\omega_o^2}}\end{cases} C1=2n2ωo2 x˙0x0(nn2ωo2 )C2=2n2ωo2 x0˙+x0(n+n2ωo2 )

因此,微分方程的解表示为:
x ( t ) = x ˙ 0 − x 0 ( − n − n 2 − ω o 2 ) 2 n 2 − ω o 2 e ( − n + n 2 − ω o 2 ) t + − x 0 ˙ + x 0 ( − n + n 2 − ω o 2 ) 2 n 2 − ω o 2 e ( − n − n 2 − ω o 2 ) t x(t)=\dfrac{\dot{x}_0-x_0(-n-\sqrt{n^2-\omega_o^2})}{2\sqrt{n^2-\omega_o^2}}e^{(-n+\sqrt{n^2-\omega_o^2})t}+\dfrac{-\dot{x_0}+x_0(-n+\sqrt{n^2-\omega_o^2})}{2\sqrt{n^2-\omega_o^2}}e^{(-n-\sqrt{n^2-\omega_o^2})t} x(t)=2n2ωo2 x˙0x0(nn2ωo2 )e(n+n2ωo2 )t+2n2ωo2 x0˙+x0(n+n2ωo2 )e(nn2ωo2 )t

c = 16   N ⋅ s / m c=16\,N·s/m c=16Ns/m k = 39.48   N / m k=39.48\,N/m k=39.48N/m m = 1   K g m=1\,Kg m=1Kg,则 n 2 = ( c / ( 2 m ) ) 2 = 64 n^2=(c/(2m))^2=64 n2=(c/(2m))2=64 ω o 2 = k / m = 39.48 \omega_o^2=k/m=39.48 ωo2=k/m=39.48,所以 n 2 − ω 0 2 = 4.952 > 0 n^2-\omega_0^2=4.952>0 n2ω02=4.952>0

同时,令 t = 0 t=0 t=0 x ( 0 ) = 1 m x(0)=1m x(0)=1m x ˙ ( 0 ) = 0 m / s \dot{x}(0)=0m/s x˙(0)=0m/s,方程所对应的图形为:(曲线绘制代码见附录) 🚀

在这里插入图片描述

从变化趋势可知,在大阻尼情形下,质量块直接回到并停留在平衡位置

1.1.2、临界阻尼情形 n 2 − ω o 2 = 0 n^2-\omega_o^2=0 n2ωo2=0

该情形下,通解为:
x ( t ) = C 1 e − n t + C 2 t e − n t (1-1-6) x(t)=C_1e^{-nt}+C_2te^{-nt}\tag{1-1-6} x(t)=C1ent+C2tent(1-1-6)

t = 0 t=0 t=0 x ( 0 ) = x 0 x(0)=x_0 x(0)=x0 x ˙ ( 0 ) = x ˙ 0 \dot{x}(0)=\dot{x}_0 x˙(0)=x˙0,代入方程(1-1-6)及其一阶导数方程,得:
{ x 0 = C 1 x ˙ 0 = C 1 ( − n ) + C 2 \begin{cases}x_0=C_1\\\dot{x}_0=C_1(-n)+C_2\end{cases} {x0=C1x˙0=C1(n)+C2

解得:
{ C 1 = x 0 C 2 = x ˙ 0 + n x 0 \begin{cases}C_1=x_0\\C_2=\dot{x}_0+nx_0\end{cases} {C1=x0C2=x˙0+nx0

因此,微分方程的解表示为:
x ( t ) = x 0 e − n t + ( x ˙ + n x 0 ) t e − n t x(t)=x_0e^{-nt}+(\dot{x}+nx_0)te^{-nt} x(t)=x0ent+(x˙+nx0)tent

c = 12.567   N ⋅ s / m c=12.567\,N·s/m c=12.567Ns/m k = 39.48   N / m k=39.48\,N/m k=39.48N/m m = 1   K g m=1\,Kg m=1Kg,则 n 2 = ( c / ( 2 m ) ) 2 = 39.48 n^2=(c/(2m))^2=39.48 n2=(c/(2m))2=39.48 ω o 2 = k / m = 39.48 \omega_o^2=k/m=39.48 ωo2=k/m=39.48,所以 n 2 − ω o 2 = 0 n^2-\omega_o^2=0 n2ωo2=0

同时,令 t = 0 t=0 t=0 x ( 0 ) = 1 m x(0)=1m x(0)=1m x ˙ ( 0 ) = 0 m / s \dot{x}(0)=0m/s x˙(0)=0m/s,方程所对应的图形为:(曲线绘制代码见附录) 🚀

在这里插入图片描述

在相同的初始条件下,图中为临界阻尼和大阻尼情形下的系统响应,其中虚线为大阻尼情形下系统响应,实线为临界阻尼情形下系统响应。两种变化趋势较为相似,均表现为质量块直接回到并停留在平衡位置,但是,临界阻尼回到平衡位置时间最短

1.1.3、小阻尼情形 n 2 − ω o 2 < 0 n^2-\omega_o^2<0 n2ωo2<0

该情形下,通解为:
x ( t ) = e − n t ( C 1 cos ⁡ ( ω o 2 − n 2 t ) + C 2 sin ⁡ ( ω o 2 − n 2 t ) ) (1-1-7) x(t)=e^{-n t}(C_1\cos(\sqrt{\omega_o^2-n^2}t)+C_2\sin(\sqrt{\omega_o^2-n^2}t))\tag{1-1-7} x(t)=ent(C1cos(ωo2n2 t)+C2sin(ωo2n2 t))(1-1-7)

t = 0 t=0 t=0 x ( 0 ) = x 0 x(0)=x_0 x(0)=x0 x ˙ ( 0 ) = x ˙ 0 \dot{x}(0)=\dot{x}_0 x˙(0)=x˙0,代入方程(1-1-7)及其一阶导数方程,得:
{ x 0 = C 1 x ˙ 0 = − n C 1 + C 2 ω o 2 − n 2 \begin{cases}x_0=C_1\\\dot{x}_0=-nC_1+C_2\sqrt{\omega_o^2-n^2}\end{cases} {x0=C1x˙0=nC1+C2ωo2n2

解得:
{ C 1 = x 0 C 2 = x ˙ 0 + n x 0 ω o 2 − n 2 \begin{cases}C_1=x_0\\\\C_2=\dfrac{\dot{x}_0+nx_0}{\sqrt{\omega_o^2-n^2}}\end{cases} C1=x0C2=ωo2n2 x˙0+nx0

因此,微分方程的解表示为:
x ( t ) = e − n t ( x 0 cos ⁡ ( ω o 2 − n 2 t ) + x ˙ 0 + n x 0 ω o 2 − n 2 sin ⁡ ( ω o 2 − n 2 t ) ) x(t)=e^{-nt}(x_0\cos(\sqrt{\omega_o^2-n^2}t)+\dfrac{\dot{x}_0+nx_0}{\sqrt{\omega_o^2-n^2}}\sin(\sqrt{\omega_o^2-n^2}t)) x(t)=ent(x0cos(ωo2n2 t)+ωo2n2 x˙0+nx0sin(ωo2n2 t))

c = 2   N ⋅ s / m c=2\,N·s/m c=2Ns/m k = 39.48   N / m k=39.48\,N/m k=39.48N/m m = 1   K g m=1\,Kg m=1Kg,则 n 2 = ( c / ( 2 m ) ) 2 = 1 n^2=(c/(2m))^2=1 n2=(c/(2m))2=1 ω o 2 = k / m = 39.48 \omega_o^2=k/m=39.48 ωo2=k/m=39.48,所以 n 2 − ω o 2 = − 38.48 < 0 n^2-\omega_o^2=-38.48<0 n2ωo2=38.48<0

同时,令 t = 0 t=0 t=0 x ( 0 ) = 1 m x(0)=1m x(0)=1m x ˙ ( 0 ) = 0 m / s \dot{x}(0)=0m/s x˙(0)=0m/s,方程所对应的图形为:(曲线绘制代码见附录) 🚀

在这里插入图片描述

从变化趋势可知,在小阻尼情形下,质量块围绕平衡位置振动,振幅衰减

1.1.4、无阻尼情形 n = 0 n=0 n=0

n = 0 n=0 n=0,即 c = 0 c=0 c=0,则基本动力学方程可写成:
{ m x ¨ + k x = 0 x ( 0 ) = x 0 ,     x ˙ ( 0 ) = x ˙ 0 (1-1-8) \begin{cases}m\ddot{x}+kx=0\\x(0)=x_0,\,\,\,\dot{x}(0)=\dot{x}_0\end{cases}\tag{1-1-8} {mx¨+kx=0x(0)=x0,x˙(0)=x˙0(1-1-8)

微分方程(1-1-8)求解可在小阻尼的基础上将 n = 0 n=0 n=0,得:
x ( t ) = C 1 cos ⁡ ( ω o t ) + C 2 sin ⁡ ( ω o t ) (1-1-9) x(t)=C_1\cos(\omega_ot)+C_2\sin(\omega_ot)\tag{1-1-9} x(t)=C1cos(ωot)+C2sin(ωot)(1-1-9)

t = 0 t=0 t=0 x ( 0 ) = x 0 x(0)=x_0 x(0)=x0 x ˙ ( 0 ) = x ˙ 0 \dot{x}(0)=\dot{x}_0 x˙(0)=x˙0,代入方程(1-1-9)及其一阶导数方程,得:
{ x 0 = C 1 x ˙ 0 = C 2 ω o \begin{cases}x_0=C_1\\\dot{x}_0=C_2\omega_o\end{cases} {x0=C1x˙0=C2ωo

解得:
{ C 1 = x 0 C 2 = x 0 ˙ ω o \begin{cases}C_1=x_0\\\\C_2=\dfrac{\dot{x_0}}{\omega_o}\end{cases} C1=x0C2=ωox0˙

因此,微分方程的解表示为:
x ( t ) = x 0 cos ⁡ ( ω o t ) + x ˙ 0 ω o sin ⁡ ( ω o t ) x(t)=x_0\cos(\omega_o t)+\dfrac{\dot{x}_0}{\omega_o}\sin(\omega_o t) x(t)=x0cos(ωot)+ωox˙0sin(ωot)

k = 39.48   N / m k=39.48\,N/m k=39.48N/m m = 1   K g m=1\,Kg m=1Kg,同时,令 x ( 0 ) = 1 m x(0)=1m x(0)=1m x ˙ ( 0 ) = 0 m / s \dot{x}(0)=0m/s x˙(0)=0m/s,方程所对应的图形为:(曲线绘制代码见附录) 🚀

在这里插入图片描述

阻尼是一种能量耗散的机制,由于振动系统中阻尼为0,且没有外部能量输入,所以振动系统的运动位移没有衰减也没有增加

1.2、物体受迫振动的微分方程

图2所示为单自由度弹簧阻尼系统(受迫振动),其中物体的质量为 m m m,坐标原点取其质心位置,向上为正,垂直位移为 x x x,弹簧刚度系数为 k k k,阻尼为 c c c,不计弹簧自重。

在这里插入图片描述

图2. 单自由度弹簧阻尼系统(受迫振动)


弹簧力和阻尼力始终与位移 x x x 方向相反,激励 F F F 的方向随时间改变。

由动力学基本定律: F = m a F=ma F=ma,可得:
m x ¨ = F − k x − c x ˙ m\ddot{x}=F-kx-c\dot{x} mx¨=Fkxcx˙

结合初始条件,整理得基本动力学方程: { m x ¨ + c x ˙ + k x = F 0 sin ⁡ ω t x ( 0 ) = 0 ,     x ˙ ( 0 ) = x ˙ (1-2-1) \begin{cases}m\ddot{x}+c\dot{x}+kx=F_0\sin\omega t\\x(0)=0,\,\,\,\dot{x}(0)=\dot{x}\end{cases}\tag{1-2-1} {mx¨+cx˙+kx=F0sinωtx(0)=0,x˙(0)=x˙(1-2-1)

对比自由振动和受迫振动,二者差别不大,多了外部激励,即 F 0 sin ⁡ ω t F_0\sin\omega t F0sinωt

方程(1-2-1)中, m x ¨ + c x ˙ + k x = F 0 sin ⁡ ω t m\ddot{x}+c\dot{x}+kx=F_0\sin\omega t mx¨+cx˙+kx=F0sinωt (①)称为二阶常系数非齐次线性微分方程的一般形式, m x ¨ + c x ˙ + k x = 0 m\ddot{x}+c\dot{x}+kx=0 mx¨+cx˙+kx=0 (②)称为非齐次方程(①)所对应的齐次方程。

1.2.1、求解微分方程通解 x ˉ ( t ) \bar{x}(t) xˉ(t)

定理:设 x = x ∗ ( t ) x=x^{*}(t) x=x(t) 是方程(①)的解, x = x ˉ ( t ) x=\bar{x}(t) x=xˉ(t) 是方程(②)的解,那么 x = x ˉ ( t ) + x ∗ ( t ) x=\bar{x}(t)+x^{*}(t) x=xˉ(t)+x(t)仍是方程(①)的解。

由此定理可知,需要求解 x ˉ ( t ) \bar{x}(t) xˉ(t) x ∗ ( t ) x^{*}(t) x(t) x ˉ ( t ) \bar{x}(t) xˉ(t)是方程(1-2-1)齐次方程的通解,并且这里考虑小阻尼情形,所以可得:
x ˉ ( t ) = e − n t ( C 1 cos ⁡ ( ω o 2 − n 2 t ) + C 2 sin ⁡ ( ω o 2 − n 2 t ) ) (1-2-2) \bar{x}(t)=e^{-nt}(C_1\cos(\sqrt{\omega_o^2-n^2}t)+C_2\sin(\sqrt{\omega_o^2-n^2}t))\tag{1-2-2} xˉ(t)=ent(C1cos(ωo2n2 t)+C2sin(ωo2n2 t))(1-2-2)

阻尼比 ζ = c 2 k m \zeta=\frac{c}{2\sqrt{km}} ζ=2km c,阻尼常量 n = c 2 m n=\frac{c}{2m} n=2mc,所以 ζ ω o = c 2 k m ⋅ k m = c 2 m = n \zeta\omega_o=\frac{c}{2\sqrt{km}}·\sqrt{\frac{k}{m}}=\frac{c}{2m}=n ζωo=2km cmk =2mc=n ω o 2 − n 2 \sqrt{\omega_o^2-n^2} ωo2n2 为有阻尼固有频率,记作 ω d \omega_d ωd,方程(1-2-2)整理得:
x ˉ ( t ) = e − ζ ω o t ( C 1 cos ⁡ ( ω d t ) + C 2 sin ⁡ ( ω d t ) ) (1-2-3) \bar{x}(t)=e^{-\zeta \omega_ot}(C_1\cos(\omega_dt)+C_2\sin(\omega_dt))\tag{1-2-3} xˉ(t)=eζωot(C1cos(ωdt)+C2sin(ωdt))(1-2-3)

1.2.2、求解微分方程特解 x ∗ ( t ) x^{*}(t) x(t)

对于形如 f ( x ) = e λ x ( A cos ⁡ ω r t + B sin ⁡ ω r t ) f(x)=e^{\lambda x}(A\cos\omega_r t+B\sin\omega_r t) f(x)=eλx(Acosωrt+Bsinωrt),方程具有形如 x ∗ ( t ) = x k e λ x ( a cos ⁡ ω r x + b sin ⁡ ω r t ) x^{*}(t)=x^ke^{\lambda x}(a\cos\omega_r x+b\sin \omega_r t) x(t)=xkeλx(acosωrx+bsinωrt)的特解,而本方程中 f ( x ) = F 0 sin ⁡ ( ω t ) f(x)=F_0\sin(\omega t) f(x)=F0sin(ωt)符合函数形式要求,其中 λ = 0 \lambda=0 λ=0 A = 0 A=0 A=0 B = F 0 B=F_0 B=F0 ω r = ω \omega_r=\omega ωr=ω

k k k λ + i ω r \lambda+i\omega_r λ+iωr 按不是特征方程的根、或是特征方程的根取0或1。

基本动力学方程的特征方程为 m r 2 + c r + k = 0 mr^2+cr+k=0 mr2+cr+k=0,由于 λ + i ω r \lambda+i\omega_r λ+iωr 不是特征根(等式左侧有虚部,等式右侧无虚部),所以应取 k = 0 k=0 k=0,故设特解为: x ∗ ( t ) = a cos ⁡ ω t + b sin ⁡ ω t x^{*}(t)=a\cos\omega t+b\sin\omega t x(t)=acosωt+bsinωt

求导得:
{ x ∗ ( t ) ′ = − a ω sin ⁡ ω t + b ω cos ⁡ ω t x ∗ ( t ) ′ ′ = − a ω 2 cos ⁡ ω t − b ω 2 sin ⁡ ω t \begin{cases}x^{*}(t)^{'}=-a\omega\sin\omega t+b\omega\cos\omega t\\x^{*}(t)^{''}=-a\omega^2\cos\omega t-b\omega^2\sin\omega t\end{cases} {x(t)=sinωt+cosωtx(t)′′=aω2cosωtbω2sinωt

代入方程(1-2-1),整理得:
( − m ω 2 a + c ω b + k a ) cos ⁡ ω t + ( − m ω 2 b − c ω a + k b ) sin ⁡ ω t = F 0 sin ⁡ ω t (-m\omega^2a+c\omega b+ka)\cos\omega t+(-m\omega^2b-c\omega a+kb) \sin\omega t=F_0\sin\omega t (mω2a+cωb+ka)cosωt+(mω2bcωa+kb)sinωt=F0sinωt

比较两端同类项系数得:
{ − m ω 2 a + c ω b + k a = 0 − m ω 2 b − c ω a + k b = F 0 \begin{cases}-m\omega^2a+c\omega b+ka=0\\-m\omega^2b-c\omega a+kb=F_0\end{cases} {mω2a+cωb+ka=0mω2bcωa+kb=F0

由此解的:
{ a = − F 0 c ω ( k − m ω 2 ) 2 + c 2 ω 2 b = F 0 ( k − m ω 2 ) ( k − m ω 2 ) 2 + c 2 ω 2 (1-2-4) \begin{cases}a=-\dfrac{F_0c\omega}{(k-m\omega^2)^2+c^2\omega^2}\\\\b=\dfrac{F_0(k-m\omega^2)}{(k-m\omega^2)^2+c^2\omega^2}\end{cases}\tag{1-2-4} a=(kmω2)2+c2ω2F0cωb=(kmω2)2+c2ω2F0(kmω2)(1-2-4)

由前面知道 ζ ω 0 = c 2 m \zeta \omega_0=\frac{c}{2m} ζω0=2mc,则 c = 2 ζ ω o m c=2\zeta\omega_om c=2ζωom,所以 c 2 ω 2 / k 2 = 4 ζ 2 ω o 2 m 2 ω 2 / k 2 = 4 ζ 2 ω o 2 ω 2 / ω o 4 = ( 2 ζ s ) 2 c^2\omega^2/k^2=4\zeta^2\omega_o^2m^2\omega^2/k^2=4\zeta^2\omega_o^2\omega^2/\omega_o^4=(2\zeta s)^2 c2ω2/k2=4ζ2ωo2m2ω2/k2=4ζ2ωo2ω2/ωo4=(2ζs)2,其中 s = ω / ω o s=\omega/\omega_o s=ω/ωo;因此,将方程(1-2-4)分母提取 k 2 k^2 k2,整理得:
{ a = − ( F 0 / k ) 2 ζ s ( 1 − s 2 ) 2 + ( 2 ζ s ) 2 b = ( F 0 / k ) ( 1 − s 2 ) ( 1 − s 2 ) 2 + ( 2 ζ s ) 2 \begin{cases}a=-\dfrac{(F_0/k)2\zeta s}{(1-s^2)^2+(2\zeta s)^2}\\\\b=\dfrac{(F_0/k)(1-s^2)}{(1-s^2)^2+(2\zeta s)^2}\end{cases} a=(1s2)2+(2ζs)2(F0/k)2ζsb=(1s2)2+(2ζs)2(F0/k)(1s2)

因此,方程为:
x ∗ ( t ) = ( F 0 / k ) ( 1 − s 2 ) ( 1 − s 2 ) 2 + ( 2 ζ s ) 2 sin ⁡ ω t − ( F 0 / k ) 2 ζ s ( 1 − s 2 ) 2 + ( 2 ζ s ) 2 cos ⁡ ω t (1-2-5) x^{*}(t)=\dfrac{(F_0/k)(1-s^2)}{(1-s^2)^2+(2\zeta s)^2}\sin\omega t-\dfrac{(F_0/k)2\zeta s}{(1-s^2)^2+(2\zeta s)^2}\cos\omega t\tag{1-2-5} x(t)=(1s2)2+(2ζs)2(F0/k)(1s2)sinωt(1s2)2+(2ζs)2(F0/k)2ζscosωt(1-2-5)

对于方程 x p ( t ) = C 1 sin ⁡ ω t + C 2 cos ⁡ ω t x_p(t)=C_1\sin\omega t+C_2\cos\omega t xp(t)=C1sinωt+C2cosωt,利用正弦函数和差公式可得:
x p ( t ) = C 1 2 + C 2 2 sin ⁡ ( ω t + θ o ) x_p(t)=\sqrt{C_1^2+C_2^2}\sin(\omega t+\theta_o) xp(t)=C12+C22 sin(ωt+θo)

  • C 1 > 0 C_1>0 C1>0,则 θ o = arctan ⁡ C 2 C 1 \theta_o=\arctan\dfrac{C_2}{C_1} θo=arctanC1C2
  • C 1 < 0 C_1<0 C1<0 C 2 > 0 C_2>0 C2>0, 则 θ o = arctan ⁡ C 2 C 1 + π \theta_o=\arctan\dfrac{C_2}{C_1}+\pi θo=arctanC1C2+π
  • C 1 < 0 C_1<0 C1<0 C 2 < 0 C_2<0 C2<0,则 θ o = arctan ⁡ C 2 C 1 − π \theta_o=\arctan\dfrac{C_2}{C_1}-\pi θo=arctanC1C2π

经计算:

  • a 2 + b 2 = F 0 / k ( 1 − s 2 ) 2 + ( 2 ζ s ) 2 = F 0 k β \sqrt{a^2+b^2}=\frac{F_0/k}{\sqrt{(1-s^2)^2+(2\zeta s)^2}}=\frac{F_0}{k}\beta a2+b2 =(1s2)2+(2ζs)2 F0/k=kF0β,其中 β = 1 ( 1 − s 2 ) 2 + ( 2 ζ s ) 2 \beta=\frac{1}{\sqrt{(1-s^2)^2+(2\zeta s)^2}} β=(1s2)2+(2ζs)2 1 称为振幅放大因子;
  • b > 0 b>0 b>0,则 θ o = arctan ⁡ a b = − arctan ⁡ 2 ζ s 1 − s 2 \theta_o=\arctan\frac{a}{b}=-\arctan\frac{2\zeta s}{1-s^2} θo=arctanba=arctan1s22ζs,记 θ o = − θ \theta_o=-\theta θo=θ
  • b < 0 b<0 b<0,则 θ o = arctan ⁡ a b − π = − arctan ⁡ 2 ζ s 1 − s 2 − π \theta_o=\arctan\frac{a}{b}-\pi=-\arctan\frac{2\zeta s}{1-s^2}-\pi θo=arctanbaπ=arctan1s22ζsπ,记 θ o = − θ \theta_o=-\theta θo=θ;( a a a肯定小于0)

方程(1-2-5)整理得:
x ∗ ( t ) = F 0 k β sin ⁡ ( ω t − θ ) (1-2-6) x^{*}(t)=\dfrac{F_0}{k}\beta\sin(\omega t-\theta)\tag{1-2-6} x(t)=kF0βsin(ωtθ)(1-2-6)

1.2.3、利用初始条件,求解系数 C 1 C_1 C1 C 2 C_2 C2

联立方程(1-2-3)和方程(1-2-6)得方程(1-2-1)的通解:
x ( t ) = x ˉ ( t ) + x ∗ ( t ) = e − ζ ω o t ( C 1 cos ⁡ ( ω d t ) + C 2 sin ⁡ ( ω d t ) ) + F 0 k β sin ⁡ ( ω t − θ ) (1-2-7) x(t)=\bar{x}(t)+x^{*}(t)=e^{-\zeta \omega_ot}(C_1\cos(\omega_dt)+C_2\sin(\omega_dt))+\dfrac{F_0}{k}\beta\sin(\omega t-\theta)\tag{1-2-7} x(t)=xˉ(t)+x(t)=eζωot(C1cos(ωdt)+C2sin(ωdt))+kF0βsin(ωtθ)(1-2-7)

将方程(1-2-1)可知, x ( 0 ) = x 0 x(0)=x_0 x(0)=x0 x ˙ ( 0 ) = x ˙ 0 \dot{x}(0)=\dot{x}_0 x˙(0)=x˙0,代入方程(1-2-7)得:

x 0 = C 1 − F 0 k β sin ⁡ θ → C 1 = x 0 + F 0 k β sin ⁡ θ x_0=C_1-\dfrac{F_0}{k}\beta\sin\theta\to C_1=x_0+\dfrac{F_0}{k}\beta\sin\theta x0=C1kF0βsinθC1=x0+kF0βsinθ

x ˙ ( t ) = ( − ζ ω o ) e − ζ ω o t ( C 1 cos ⁡ ω d t + C 2 sin ⁡ ω d t ) + e − ζ ω o t ( − C 1 ω d sin ⁡ ω d t + C 2 ω d cos ⁡ ω d t ) + F 0 k β ω cos ⁡ ( ω t − θ ) \dot{x}(t)=(-\zeta\omega_o)e^{-\zeta\omega_o t}(C_1\cos\omega_d t+C_2\sin\omega_d t)+e^{-\zeta \omega_o t}(-C_1\omega_d\sin\omega_d t+C_2\omega_d\cos\omega_d t)+\dfrac{F_0}{k}\beta\omega\cos(\omega t-\theta) x˙(t)=(ζωo)eζωot(C1cosωdt+C2sinωdt)+eζωot(C1ωdsinωdt+C2ωdcosωdt)+kF0βωcos(ωtθ)

x ˙ 0 = − ζ ω o C 1 + C 2 ω d + F 0 k β ω cos ⁡ θ \dot{x}_0=-\zeta\omega_o C_1+C_2\omega_d+\dfrac{F_0}{k}\beta\omega\cos\theta x˙0=ζωoC1+C2ωd+kF0βωcosθ

代入 C 1 C_1 C1,得:
x ˙ 0 = − ζ ω o ( x 0 + F 0 k β sin ⁡ θ ) + C 2 ω d + F 0 k β ω cos ⁡ θ \dot{x}_0=-\zeta\omega_o (x_0+\dfrac{F_0}{k}\beta\sin\theta)+C_2\omega_d+\dfrac{F_0}{k}\beta\omega\cos\theta x˙0=ζωo(x0+kF0βsinθ)+C2ωd+kF0βωcosθ

解得 C 2 C_2 C2
C 2 = x ˙ 0 ω d + ζ ω o ω d x 0 + F 0 k β ( ζ ω o ω d sin ⁡ θ − ω ω d cos ⁡ θ ) C_2=\dfrac{\dot{x}_0}{\omega_d}+\zeta\dfrac{\omega_o}{\omega_d}x_0+\dfrac{F_0}{k}\beta(\zeta\dfrac{\omega_o}{\omega_d}\sin\theta-\dfrac{\omega}{\omega_d}\cos\theta) C2=ωdx˙0+ζωdωox0+kF0β(ζωdωosinθωdωcosθ)

C 1 C_1 C1 C 2 C_2 C2 代入方程(1-2-7),得:

x ( t ) = e − ζ ω o t ( x 0 cos ⁡ ω d t + x ˙ 0 + ζ ω o x 0 ω d sin ⁡ ω d t ) ⏞ 初始响应条件 + F 0 k β e − ζ ω o t ( sin ⁡ θ cos ⁡ ω d t + ω o ω d ( ζ sin ⁡ θ − s cos ⁡ θ ) sin ⁡ ω d t ) ⏞ 自由伴随振动 + F 0 k β sin ⁡ ( ω t − θ ) ⏞ 受迫振动响应 x(t)=\overbrace{e^{-\zeta\omega_o t}(x_0\cos\omega_d t+\dfrac{\dot{x}_0+\zeta\omega_o x_0}{\omega_d}\sin\omega_d t)}^{初始响应条件}+\overbrace{\dfrac{F_0}{k}\beta e^{-\zeta\omega_o t}(\sin\theta\cos\omega_d t+\dfrac{\omega_o}{\omega_d}(\zeta\sin\theta-s\cos\theta)\sin\omega_d t)}^{自由伴随振动}+\overbrace{\dfrac{F_0}{k}\beta\sin(\omega t-\theta)}^{受迫振动响应} x(t)=eζωot(x0cosωdt+ωdx˙0+ζωox0sinωdt) 初始响应条件+kF0βeζωot(sinθcosωdt+ωdωo(ζsinθscosθ)sinωdt) 自由伴随振动+kF0βsin(ωtθ) 受迫振动响应

其中,(虽然前面有提到,这里汇总一下)

  • ω o = k / m \omega_o=\sqrt{k/m} ωo=k/m 为无阻尼的固有频率;
  • s = ω / ω o s=\omega/\omega_o s=ω/ωo
  • ζ = c / ( 2 k m ) \zeta=c/(2\sqrt{km}) ζ=c/(2km ) 为阻尼比;
  • ω d = ω o 1 − ζ 2 \omega_d=\omega_o\sqrt{1-\zeta^2} ωd=ωo1ζ2 为带阻尼的固有频率;
  • β = 1 ( 1 − s 2 ) 2 + ( 2 ζ s ) 2 \beta=\dfrac{1}{\sqrt{(1-s^2)^2+(2\zeta s)^2}} β=(1s2)2+(2ζs)2 1 为振幅放大因子;
  • θ \theta θ 为相位角;

绘制全响应曲线前需要明确,以某种参数单位输入,输出的 x ( t ) x(t) x(t)是什么单位?m? mm?

方程(1-2-1): m x ¨ + c x ˙ + k x = F 0 sin ⁡ ω t m\ddot{x}+c\dot{x}+kx=F_0\sin\omega t mx¨+cx˙+kx=F0sinωt

  • m m m 的单位为 K g Kg Kg
  • c c c 的单位为 N ⋅ s / m N·s/m Ns/m
  • k k k 的单位为 N / m N/m N/m
  • F 0 F_0 F0 的单位为 N N N
  • 假设 x x x 的单位为 m m m
  • 假设 x ˙ \dot{x} x˙ 的单位为 m / s m/s m/s
  • 假设 x ¨ \ddot{x} x¨ 的单位为 m / s 2 m/s^2 m/s2


将这些单位代入方程中: K g ⋅ m s 2 + N ⋅ s m ⋅ m s + N m ⋅ m = N + N + N = N Kg·\frac{m}{s^2}+\frac{N·s}{m}·\frac{m}{s}+\frac{N}{m}·m=N+N+N=N Kgs2m+mNssm+mNm=N+N+N=N;符合左右两边单位相同要求。
所以, k k k c c c m m m(质量)以上述单位输入,输出单位为 m m m(米)。

全响应 x ( t ) x(t) x(t) 🚀 由三部分组成,第一部分为初始响应条件,第二部分为自由伴随振动,第三部分为受迫振动响应,前两项主要由两部分乘积组成,分别为指数函数 e − ζ ω o t e^{-\zeta\omega_o t} eζωot (单调递减)和三角函数(在-1~1之间变化),因此随着时间的推移,这两项振动将逐渐消失,最后形成稳定的正弦曲线形式的受迫振动(方程最后一项),如图3所示。

谐响应正是研究时间与位移关系中后面段的稳定受迫振动。

绘制全响应曲线:(曲线绘制代码见附录) 🚀

在这里插入图片描述

图3. 各项响应曲线

在这里插入图片描述

图4. 全响应曲线


图3中, x ( t ) − 1 x(t)-1 x(t)1 为初始响应条件; x ( t ) − 2 x(t)-2 x(t)2 为自由伴随振动; x ( t ) − 3 x(t)-3 x(t)3 为为受迫振动响应,其中初始响应条件与自由振动下的小阻尼振动响应 🚀是相同。

图4中, x ( t ) x(t) x(t) 为全响应变化曲线。

1.3、 为什么激励频率与结构固有频率相近会发生振幅显著增加(共振)?

共振是一个物理学概念,指的是在特定条件下,一个系统在外部力的作用下,其振动幅度可能显著增加的现象。

随着时间的推移前两项逐渐消失,所以共振分析主要集中在受迫振动响应上:

x ∗ ( t ) = F 0 k β sin ⁡ ( ω t − θ ) = F 0 k ⋅ 1 ( 1 − ω 2 ω o 2 ) 2 + ( 2 ζ ω ω o ) 2 ⋅ sin ⁡ ( ω t − θ ) x^{*}(t)=\dfrac{F_0}{k}\beta\sin(\omega t-\theta)=\dfrac{F_0}{k}·\dfrac{1}{\sqrt{(1-\dfrac{\omega^2}{\omega_o^2})^2+(2\zeta \dfrac{\omega}{\omega_o})^2}}·\sin(\omega t-\theta) x(t)=kF0βsin(ωtθ)=kF0(1ωo2ω2)2+(2ζωoω)2 1sin(ωtθ)

当系统确定后,其 k k k c c c m m m 将保持不变,进而固有频率 ω o \omega_o ωo 和阻尼比 ζ \zeta ζ 也保持不变,与外界载荷无关,因此固有频率和阻尼比是系统的固有属性。对于方程而言,当外载荷以什么形式输入, x ∗ ( t ) x^{*}(t) x(t)振幅显著增加?

由于 k k k ω o \omega_o ωo ζ \zeta ζ 均为常量,

  • 当施加较大的 F 0 F_0 F0,则 x ∗ ( t ) x^{*}(t) x(t) 将变大;
  • 当系统的阻尼比较小时候,外部载荷 ω \omega ω 和固有频率 ω o \omega_o ωo 相等,此时 ( 1 − ω 2 ω o 2 ) 2 + ( 2 ζ ω ω o 2 ) \sqrt{(1-\frac{\omega^2}{\omega_o^2})^2+(2\zeta\frac{\omega}{\omega_o^2})} (1ωo2ω2)2+(2ζωo2ω) 趋近于0,那么 x ∗ ( t ) x^{*}(t) x(t) 将趋于无穷大,这也解释了为什么外部激励频率与固有频率相近导致振幅显著增加。

频率不是发生共振的唯一条件,激励方向也是一个重要的因素。

二、有限元模态计算验证

模态计算是用来计算线性结构的动力学特性。

动力学特性:

  • 结构的固有频率;
  • 结构的模态振型;(模态分析得到的变形量不是真实变形,而是比例值,谐响应和瞬态动力学是真实变形量)
  • 振型参与系数;
  • 有效质量;

这里通过模态计算获得结构的固有频率与前文计算所得进行比较。

由前文叙述,无阻尼的固有频率为 ω o = k m \omega_o=\sqrt{\frac{k}{m}} ωo=mk ,有阻尼的固有频率为 ω d = ω o 1 − ζ 2 \omega_d = \omega_o\sqrt{1-\zeta^2} ωd=ωo1ζ2

令密度为 1000 K g / m 3 1000Kg/m^3 1000Kg/m3,体积为 0.001 m 3 0.001m^3 0.001m3,则质量为 1 K g 1Kg 1Kg;弹簧系数为 39.48 N / m 39.48N/m 39.48N/m,阻尼为 2 N ⋅ s / m 2N·s/m 2Ns/m

计算所得:

  • 无阻尼固有频率: f o = 1 2 π ω o = 1 2 π 39.48 N / m 1 K g = 1 H z f_o=\frac{1}{2\pi}\omega_o=\frac{1}{2\pi}\sqrt{\frac{39.48 N/m}{1Kg}}=1Hz fo=2π1ωo=2π11Kg39.48N/m =1Hz
  • 有阻尼固有频率: f d = 1 2 π ω o 1 − ζ 2 = 1 2 π 39.48 N / m 1 K g 1 − ( 2 N ⋅ s / m 2 39.48 N / m × 1 K g ) 2 = 0.987 H z f_d=\frac{1}{2\pi}\omega_o\sqrt{1-\zeta^2}=\frac{1}{2\pi}\sqrt{\frac{39.48 N/m}{1Kg}}\sqrt{1-(\frac{2N·s/m}{2\sqrt{39.48N/m×1Kg}})^2}=0.987Hz fd=2π1ωo1ζ2 =2π11Kg39.48N/m 1(239.48N/m×1Kg 2Ns/m)2 =0.987Hz

选用模块:Modal
参考视频:例10-2 二自由度弹簧振子模态分析 🚀

2.1、无阻尼

模态计算主要步骤如下:

① 双击模块【Modal】;

在这里插入图片描述

② 双击Engineering Data,将密度修改为 1000 K g / m 3 1000Kg/m^3 1000Kg/m3

在这里插入图片描述

③ 右键Geometry => Replace Geometry => 选择对应模型,将三维模型添加到模块下;

④ 双击Model,进入Mechanical界面,点击Solid选择材料,选择完成后物体的质量为1Kg,设置为Rigid (刚体);

在这里插入图片描述
⑤ Model => 右键Inset => Connections;

⑥ 选择Connection => 右键Inset => Spring =>

  • 设置 Longitudinal Striffness 为 39.48 N/m(注意单位);
  • 设置 Scope 为 Body-Ground;
  • 设置弹簧接地端的坐标,目的使弹簧朝向与连接的物体垂直;
  • 设置 Face 为物体的某一个面,之后仅这个面的垂直方向平移自由度为 free,其它5个自由度均为约束;
  • 设置 Behavior 为 Rigid

在这里插入图片描述
在这里插入图片描述

⑦ 选择Connection => 右键Inset => Joint => 设置约束;(另一种约束方式:见下文 🚀)

在这里插入图片描述

⑧ 点击 Mesh => 右键 Generate Mesh;

在这里插入图片描述

⑨ 点击 Modal => 右键 Solve;

在这里插入图片描述

⑩ 计算完成之后,点击 Solution 查看固有频率;

在这里插入图片描述


有限元计算得到的模态频率与公式计算结果一致。

由于只有一个自由度,所以只有一阶固有频率。

当 Joint => Type中没有 General 选项,可以选用该种约束:

点击 Modal(A5)=> 右键 Insert => Remote Displacement =>

  • 选择质量块的一个面;
  • 除了Y方向平移为Free,其余均为0;
  • Behavior:Rigid;
    在这里插入图片描述

2.2、有阻尼

① 在无阻尼的设置下,输入阻尼 2 N ⋅ s / m 2N·s/m 2Ns/m

在这里插入图片描述

② 在Analysis Settings => Solver Controls => Damped 选择 Yes;

在这里插入图片描述
③ 点击Modal => 右键 Solve,待计算完成,点击Solution查看固有频率 ;

在这里插入图片描述


有限元计算得到的模态频率与公式计算结果一致。

PS:没设置阻尼的时候,弹簧还是弹簧形状,设置阻尼后,弹簧就变成了圆柱。

三、有限元谐响应验证

什么是谐响应分析? 确定一个结构在已知频率的正弦(简谐)载荷作用下结构响应的技术。

如果载荷为非正弦类的周期载荷,谐响应做不了,需要在瞬态动力学模块中去完成。

激励输入:

  • 已知大小和频率的谐波载荷(力、压力和强迫位移);
  • 可以输入多种类型的载荷,作用位置、先后顺序(相位)、作用类型等均可不同,但是激励频率必需相等

谐响应载荷输入参数要求:

  • 载荷的幅值 F m a x F_{max} Fmax
  • 载荷的相位角 θ \theta θ
  • 相位角表示两个或更多载荷之间的相位移动;
    • 如果只定义一个载荷,不需要定义相位角,即采用默认值0。
  • 载荷的激励频率范围 f m i n < f < f m a x f_{min}<f<f_{max} fmin<f<fmax;(参考模态分析前几阶的频率,确定激励频率范围)


则输入激励为:
F i = F m a x sin ⁡ ( 2 π f t + θ ) F_i = F_{max}\sin(2\pi f t+\theta) Fi=Fmaxsin(2πft+θ)

响应输出:

  • 结构输出的响应的频率和激励频率相同,比如输入载荷激励频率为1Hz,输出响应的频率也是1Hz。
    • 正如前文所述,该响应为受迫振动响应,不含初始响应条件和自由伴随振动。全响应 x ( t ) x(t) x(t) 🚀 可知,受迫振动响应的频率正好就是激励频率。
  • 对于任何结构阻尼,共振点相位角为±90°

谐响应的输出可以得到幅频曲线图(关于振幅 z z z 和激励频率点的图)和相频曲线图(关于相位 ψ \psi ψ 和激励频率点的图)。则某个激励下输出响应为: x ( t ) = z sin ⁡ ( 2 π f t + ψ ) x(t)=z\sin(2\pi ft+\psi) x(t)=zsin(2πft+ψ)

ANSYS Workbench 提供了完全法和模态叠加法(振型叠加法)两种求解方法:

  • 速度较慢,求解激励频率点间隔均匀,精度不依赖于模态分析中模态求解阶数;
  • 速度较快,支持共振点附近激励频率点非均匀分布求解,精度依赖于模态分析中模态求解阶数(可通过有效质量判断模态阶数是否充足);

本实例中两种方法均进行了尝试,大差不差,毕竟只有一个自由度,也就只有一阶固有频率。

3.1、基于完全法的谐响应计算

主要步骤如下:

① 模块:Harmonic Response,这个模块既可以用完全法去计算,也可以用模态叠加法去求解。

② 材料属性:同模态计算一样,将密度设置为 1000 K g / m 3 1000Kg/m^3 1000Kg/m3

③ 模型导入:同模态计算一样,导入模型,进入Mechanical界面,选择材料,谐响应需要施加激励,而刚体无法施加,所以这里设置为柔性体。

④ 连接:同模态计算设置一样,添加 Spring (设置弹簧系数 39.48 N / m 39.48N/m 39.48N/m 和阻尼 2 N ⋅ s / m 2N·s/m 2Ns/m) 和 Joint。

⑤ 网格划分:为了尽可能模拟刚体效果,这里在网格划分的时候,将所有的边设置的段数为1,这样最后只有一个单元,然后一键Mesh。

⑥ 分析设置:设置激励范围、间隔点、求解方式、结构阻尼常量系数。

  • Range Minimum:激励范围最小值;
  • Range Maximum:激励范围最大值;
  • Solution Intervals:间隔点,比如激励范围10Hz,间隔10,就是在这个频率范围内,均匀取10个激励频率点;
  • Solution Method:Full,完全法;
  • Constant Structural Damping Coefficient:结构阻尼常量系数 C C C
    • C = 2 ζ ω o m C=2\zeta\omega_o m C=2ζωom,其中 ζ \zeta ζ 为阻尼比, ω o \omega_o ωo 为固有频率, m m m 为质量,计算所得 C = 2 × 0.16 × 1 × 1 = 0.32 C=2×0.16×1×1=0.32 C=2×0.16×1×1=0.32
    • 前面弹簧处设置了阻尼,这里也设置了阻尼,系统怎么处理?
      • 如果只是设置1处,均能得到正确结果;
      • 如果两处均设置,且输入的阻尼正确,则结果错误,振幅更小,有点两处阻尼叠加效果;

在这里插入图片描述

⑦ 添加载荷:输入一个Force,设置Force的作用面以及力的大小,之后就可以开始计算。

⑧ 后处理:查看Bode图和振动云图。

  • Solution => Insert => Frequency Response => Stress/Strain/Deformation… 查看应力/应变/变形…的幅频曲线和相频曲线(幅频图+相频图=Bode图)
  • Solution => Insert => Deformation => Total,设置查看的频率,查看模型的变形云图。

在这里插入图片描述

图中所示为不同激励频率下的响应,从中可以知道,在1Hz的时候振幅最大,即在1Hz的激励频率下,结构的振幅存在显著增加,结构发生共振,共振的响应为:( 2 π ∗ 1 t = 6.283 t 2\pi*1t=6.283t 2π1t=6.283t 89.993 ° 89.993° 89.993°约等于 π 2 = 1.571 \frac{\pi}{2}=1.571 2π=1.571
x ( t ) = 79.154 sin ⁡ ( 6.283 t − 1.571 ) x(t)=79.154\sin(6.283t-1.571) x(t)=79.154sin(6.283t1.571)

将参数代入 全响应 x ( t ) x(t) x(t) 🚀 中的受迫振动响应中,得到:
x ( t ) = 79.578 sin ⁡ ( 6.283 t − 1.571 ) x(t)=79.578\sin(6.283t-1.571) x(t)=79.578sin(6.283t1.571)

有限元计算得到的受迫振动响应与公式计算结果一致。

在这里插入图片描述

图5. 谐响应分析(受迫振动响应)

3.2、基于模态叠加法的谐响应计算

模态叠加法同完全法的步骤基本一致,主要步骤如下:

① 模块:Modal 和 Harmonic Response,建立二者数据关联。

② 材料属性:同完全法一样。

③ 模型导入:同完全法一样。

④ 连接:同完全法一样。

⑤ 网格划分:同完全法一样。

⑥ 模态计算:直接求解模态。

⑦ 分析设置:基本操作同完全法一样,除了:

  • Solution Method,系统自动设置为 Mode Superposition 。
  • Cluster Number:采用共振点附近激励频率点非均匀分布求解;

在这里插入图片描述

⑧ 添加载荷:同完全法一样。

⑨ 后处理:同完全法一样。

Modal 模块下的 Analysis Setting => Solver Controls => Damped:Yes 会报错:MSUP Harmonic and MSUP Transient analysis doesn't support Full Damped or Unsymmetric solver type selection of the upstream Modal analysis.

所以选No.

同完全法不同的是,在弹簧处设置阻尼,分析设置中也设置阻尼,无论设置一处还是设置两处,计算结果一样。

在这里插入图片描述


图中所示为不同激励频率下的响应,从中可以知道,在1Hz的时候振幅较大(最大的在其附近,可能是模态叠加法误差导致),即在1Hz的激励频率下,结构的振幅存在显著增加,结构发生共振,共振的响应为:( 2 π ∗ 1 t = 6.283 t 2\pi*1t=6.283t 2π1t=6.283t 90 ° 90° 90°等于 π 2 = 1.571 \frac{\pi}{2}=1.571 2π=1.571
x ( t ) = 79.154 sin ⁡ ( 6.283 t − 1.571 ) x(t)=79.154\sin(6.283t-1.571) x(t)=79.154sin(6.283t1.571)

同完全法的计算结果一致,同理论解同样一致。

四、有限元瞬态动力学验证

什么是瞬态动力学分析? 它是确定随时间变化载荷作用下结构响应的技术,全过程模拟结构在初始条件和外界载荷作用下的响应,不同于谐响应,瞬态动力学的响应是全响应

瞬态动力学同样提供了两种方法:模态叠加法和完全法,基本的操作类似,参考视频中采用模态叠加法,由于模态叠加法计算的初始条件只能是速度和位移都为0,所以本示例采用完全法。

参考视频:例11-2 二自由度弹簧振子谐响应分析 🚀

主要步骤如下:

① 模块:Transient Structural。

② 材料属性:同谐响应计算一样。

③ 模型导入:同谐响应计算一样。

④ 连接:同谐响应计算一样。

⑤ 网格划分:同谐响应计算一样。

⑥ 创建 Named Selections:选择一个Node => 右键 Create Name Selection… => 命名 => OK。

在这里插入图片描述

⑦ 载荷步设置:为了设置初始条件非零,需要分两个载荷步,

  • 第一个载荷步:0s~0.001s,添加节点位移(Nodal Displacement),本示例设置为1m,在【Tabular Data 】中,点击 0.001s~11s 栏 => 右键 Activate/Deactivate at this step,则该栏变成灰色,表示该位移设置在第二个载荷步不起作用
  • 第二个载荷步:0.001s~11s,添加外力载荷 sin ⁡ ( 360 ∗ ( t i m e − 0.001 ) ) \sin(360*(time-0.001)) sin(360(time0.001))(Y方向),在【Tabular Data 】中,点击 0s~0.001s 栏 => 右键 Activate/Deactivate at this step,则该栏变成灰色,表示该载荷在第一个载荷步不起作用

在这里插入图片描述

初始条件设置:

从图中黄色框框中,将0s中Y方向的位移设置为0,那么从0s到0.001s的位移为1000mm,所需时间为0.001s,所以在0.001s时刻的速度为1000m/s。最后初始条件就是:位移1m,速度为1000m/s

若将0s中Y方向的位移设置为1000mm,那么从0s到0.001s的位移为0mm,所以在0.001s时刻的速度为0m/s。最后初始条件就是:位移1m,速度为0m/s

外力载荷设置:

外力载荷大小为1N,频率为1Hz,考虑只有一个外力,所以相位为0,加上第一个载荷步0.001s,因此为 sin ⁡ ( 2 π ( t i m e − 0.001 ) ) \sin(2\pi (time-0.001)) sin(2π(time0.001)),由于软件中对于三角函数的计算采用的不是弧度,所以需要变成角度,即 sin ⁡ ( 360 ∗ ( t i m e − 0.001 ) ) \sin(360*(time-0.001)) sin(360(time0.001))

弹簧一端连着质量块,一端连着地,其中连接地的点是固定不动的定点,当弹簧的长度小于振幅,质量块将会沿着定点左右运动,这个情形会导致计算存在误差,所以需要将弹簧长度设置的最大振幅大。

弹簧长度设置:修改连接地处的坐标。

在这里插入图片描述

⑧ 分析设置:设置载荷步结束时间、初始时间步、最小时间步、最大时间步、时间积分。注意,第一个载荷步 Time Integration 设置成 off,第二个载荷步 Time Integration 设置成on

在这里插入图片描述

⑨ 计算求解与后处理:同谐响应一样。

软件中对于系统的响应在幅值上不区分正负,因此这里将数据导出做一下处理,由于理论解和仿真解高度吻合,所以将理论解向上平移30mm,方便查看二者的区别。

瞬态动力学随着初始响应条件和自由伴随振动逐渐衰减,仅剩下受迫振动响应,即为谐响应计算结果,对比两者的仿真结果,在频率和幅值上,二者计算结果吻合。(虽然存在一定的误差,但随着计算时间的推移,计算结果应该会逐渐逼近)

在这里插入图片描述

图6. 瞬态动力学仿真解与理论解对比


在这里插入图片描述

图7. 瞬态动力学模拟(初始条件:位移1mm,速度0m/s;正弦载荷)


在这里插入图片描述

图8. 瞬态动力学模拟(初始条件:位移1mm,速度0m/s;无外部激励)

五、附录

5.1、大阻尼情形响应曲线绘图

import numpy as np
import matplotlib.pyplot as plt


# Define the constants given in the equation
k = 39.48                 # Spring constant, unit: N/m
c = 16.0                   # Damping constant, unit: N·s/m
m = 1.0                   # Quality, unit: Kg

# Intermediate variable
omega_0 = np.sqrt(k/m)                                                # Natural frequency
n = c/m*0.5


# Initial conditions
x_0 = 1.0      # The displacement at time 0, unit: m
x_dot_0 = 0.0  # The velocity at time 0, unit: m/s

# Define time array
t = np.linspace(0, 12, 1000)

# Define the function x(t)
C_1 = (x_dot_0-x_0*(-n - np.sqrt(n * n - omega_0 * omega_0))) / (2 * np.sqrt(n * n - omega_0 * omega_0))
r_1 = np.exp((-n + np.sqrt(n * n - omega_0 * omega_0)) * t)
C_2 = (-x_dot_0 + x_0*(-n + np.sqrt(n * n - omega_0 * omega_0))) / (2 * np.sqrt(n * n - omega_0 * omega_0))
r_2 = np.exp((-n - np.sqrt(n * n - omega_0 * omega_0)) * t)

x_t = C_1*r_1 + C_2*r_2


# Plotting the curve
plt.figure(figsize=(10, 6))
plt.xlim(0, 6)
plt.ylim(-1.05, 1.05)

plt.plot(t, x_t, label=r'$x(t)$', linestyle='-', linewidth=1.5)

plt.title('Free vibration response')
plt.xlabel('Time / s')
plt.ylabel('Amplitude / m')
plt.grid(True)
plt.legend()

plt.savefig('sin_curve.png', dpi=300)  # 保存图像为文件
np.savetxt('curve_data.csv', np.column_stack((t, x_t)), delimiter=',', header='x,y', comments='')  # 保存曲线数据为CSV文件
plt.show()

5.2、临界阻尼情形响应曲线绘图

import numpy as np
import matplotlib.pyplot as plt


# Define the constants given in the equation
k = 39.48                 # Spring constant, unit: N/m
c1 = 16
c2 = 12.567                # Damping constant, unit: N·s/m
m = 1.0                   # Quality, unit: Kg

# Intermediate variable
omega_0 = np.sqrt(k/m)                                                # Natural frequency
n1 = c1/m*0.5
n2 = c2/m*0.5

# Initial conditions
x_0 = 1.0      # The displacement at time 0, unit: m
x_dot_0 = 0.0  # The velocity at time 0, unit: m/s

# Define time array
t = np.linspace(0, 12, 1000)

# Define the function x(t)
C_1 = (x_dot_0-x_0*(-n1 - np.sqrt(n1 * n1 - omega_0 * omega_0))) / (2 * np.sqrt(n1 * n1 - omega_0 * omega_0))
r_1 = np.exp((-n1 + np.sqrt(n1 * n1 - omega_0 * omega_0)) * t)
C_2 = (-x_dot_0 + x_0*(-n1 + np.sqrt(n1 * n1 - omega_0 * omega_0))) / (2 * np.sqrt(n1 * n1 - omega_0 * omega_0))
r_2 = np.exp((-n1 - np.sqrt(n1 * n1 - omega_0 * omega_0)) * t)

x_t1 = C_1*r_1 + C_2*r_2
x_t2 = x_0*np.exp(-n2*t)+(x_dot_0+n2*x_0)*t*np.exp(-n2*t)


# Plotting the curve
plt.figure(figsize=(10, 6))
plt.xlim(0, 6)
plt.ylim(-1.05, 1.05)

plt.plot(t, x_t1, label=r'$x(t)$ Large damping', color='Gray', linestyle=':', linewidth=1.5)
plt.plot(t, x_t2, label=r'$x(t)$ Critical damping', linestyle='-', linewidth=1.5)


plt.title('Free vibration response')
plt.xlabel('Time / s')
plt.ylabel('Amplitude / m')
plt.grid(True)
plt.legend()

plt.savefig('sin_curve.png', dpi=300)  # 保存图像为文件
np.savetxt('curve1_data.csv', np.column_stack((t, x_t1)), delimiter=',', header='x,y', comments='')  # 保存曲线数据为CSV文件
np.savetxt('curve2_data.csv', np.column_stack((t, x_t2)), delimiter=',', header='x,y', comments='')  # 保存曲线数据为CSV文件
plt.show()

5.3、小阻尼情形响应曲线绘图

import numpy as np
import matplotlib.pyplot as plt


# Define the constants given in the equation
k = 39.48                 # Spring constant, unit: N/m
c = 2                     # Damping constant, unit: N·s/m
m = 1.0                   # Quality, unit: Kg

# Intermediate variable
omega_0 = np.sqrt(k/m)                                                # Natural frequency
n = c/m*0.5
omega_d = np.sqrt(omega_0*omega_0 - n*n)


# Initial conditions
x_0 = 1.0      # The displacement at time 0, unit: m
x_dot_0 = 0.0  # The velocity at time 0, unit: m/s

# Define time array
t = np.linspace(0, 12, 1000)

# Define the function x(t)
x_t = np.exp(-n*t)*(x_0*np.cos(omega_d*t)+((x_dot_0+n*x_0)/omega_d)*np.sin(omega_d*t))

# Plotting the curve
plt.figure(figsize=(10, 6))
plt.xlim(0, 6)
plt.ylim(-1.05, 1.05)

plt.plot(t, x_t, label=r'$x(t)$', linestyle='-', linewidth=1.5)


plt.title('Free vibration response')
plt.xlabel('Time / s')
plt.ylabel('Amplitude / m')
plt.grid(True)
plt.legend()

plt.savefig('sin_curve.png', dpi=300)  # 保存图像为文件
np.savetxt('curve1_data.csv', np.column_stack((t, x_t)), delimiter=',', header='x,y', comments='')  # 保存曲线数据为CSV文件
plt.show()

5.4、无阻尼情形响应曲线绘图

import numpy as np
import matplotlib.pyplot as plt


# Define the constants given in the equation
k = 39.48                 # Spring constant, unit: N/m
c = 0                     # Damping constant, unit: N·s/m
m = 1.0                   # Quality, unit: Kg

# Intermediate variable
omega_0 = np.sqrt(k/m)                                                # Natural frequency
n = c/m*0.5


# Initial conditions
x_0 = 1.0      # The displacement at time 0, unit: m
x_dot_0 = 0.0  # The velocity at time 0, unit: m/s

# Define time array
t = np.linspace(0, 12, 1000)

# Define the function x(t)
x_t = x_0*np.cos(omega_0*t)+(x_dot_0/omega_0)*np.sin(omega_0*t)

# Plotting the curve
plt.figure(figsize=(10, 6))
plt.xlim(0, 6)
plt.ylim(-1.05, 1.05)

plt.plot(t, x_t, label=r'$x(t)$', linestyle='-', linewidth=1.5)


plt.title('Free vibration response')
plt.xlabel('Time / s')
plt.ylabel('Amplitude / m')
plt.grid(True)
plt.legend()

plt.savefig('sin_curve.png', dpi=300)  # 保存图像为文件
np.savetxt('curve1_data.csv', np.column_stack((t, x_t)), delimiter=',', header='x,y', comments='')  # 保存曲线数据为CSV文件
plt.show()

5.5、方程各项响应曲线与全响应曲线绘图

import numpy as np
import matplotlib.pyplot as plt


# Define the constants
k = 39.48                 # Spring constant, unit: N/m
c = 2.0                   # Damping constant, unit: N·s/m
omega = 2*np.pi           # Excitation angular frequency
m = 1.0                   # Quality, unit: Kg
F_0 = 1.0                 # External force amplitude, unit: N

# Intermediate variable
zeta = c/np.sqrt(k*m)*0.5                                             # Damping ratio
omega_0 = np.sqrt(k/m)                                                # Natural frequency
omega_d = omega_0*np.sqrt(1-np.square(zeta))                          # Damped natural frequency
s = omega/omega_0
beta = 1.0/np.sqrt(np.square(1-np.square(s))+np.square(2*zeta*s))     # Amplitude amplification factor
b = ((F_0/k)*(1-s*s))/(np.square(1-s*s)+np.square(2*zeta*s))

if b > 0:
    theta = np.arctan((2*zeta*s)/(1-s*s))  # Phase angle
else:
    theta = np.arctan((2 * zeta * s) / (1 - s * s))+np.pi  # Phase angle

# Initial conditions
x_0 = 1.0      # The displacement at time 0, unit: m
x_dot_0 = 0.0  # The velocity at time 0, unit: m/s

# Define time array
t = np.linspace(0, 12, 1000)

# function x(t) = x_t1 + x_t2 + x_t3
x_t1 = np.exp(-zeta * omega_0 * t) * (x_0 * np.cos(omega_d * t) + (x_dot_0 + zeta * omega_0 * x_0) / omega_d * np.sin(omega_d * t))

x_t2 = F_0 / k * beta * np.exp(-zeta * omega_0 * t) * \
        (np.sin(theta) * np.cos(omega_d * t) + omega_0 / omega_d * (zeta * np.sin(theta) - np.cos(theta)) * np.sin(omega_d * t))

x_t3 = (F_0 / k) * beta * np.sin(omega_0 * t - theta)

x_t = x_t1 + x_t2 + x_t3




# Plotting the curve
plt.figure(figsize=(10, 6))
plt.xlim(0, 12)
plt.ylim(-0.65, 1.05)

# plt.plot(t, x_t1, label=r'$x(t)-1$', color='blue', linestyle='--', linewidth=1.5)
# plt.plot(t, x_t2, label=r'$x(t)-2$', color='green', linestyle=':', linewidth=1.5)
# plt.plot(t, x_t3, label=r'$x(t)-3$', color='gray', linestyle='-', linewidth=1.5)
plt.plot(t, x_t, label=r'$x(t)$', linestyle='-', linewidth=1.5)

# plt.title('Response curves of different parts')
plt.title('Full response curve')

plt.xlabel('Time / s')
plt.ylabel('Amplitude / m')
plt.grid(True)
plt.legend()

plt.savefig('sin_curve.png', dpi=300)  # 保存图像为文件
np.savetxt('curve_data.csv', np.column_stack((t, x_t)), delimiter=',', header='x,y', comments='')  # 保存曲线数据为CSV文件
plt.show()
以下是在Ansys Workbench 2021R1软件中进行分析自由度阻尼系统,简荷载,模态叠加响应分析的具体参数设置步骤: 1. 创建一个Mechanical Analysis System(机械分析系统)。在左侧Project Schematic中,右键击Analysis Systems,选择Add,然后选择Mechanical。 2. 定义材料和几何特性。在左侧Project Schematic中,右键击Geometry,选择Import Geometry,导入几何模型。在左侧Project Schematic中,右键击Materials,选择Add/Edit Material,定义材料。在左侧Project Schematic中,右键击Engineering Data,选择Add/Edit Engineering Data,定义几何特性。 3. 定义荷载。在左侧Project Schematic中,右键击Loads,选择Add,然后选择Harmonic。在弹出窗口中,定义简荷载的频率、振幅和相位。 4. 定义约束。在左侧Project Schematic中,右键击Constraints,选择Add,然后选择Fixed Support。在弹出窗口中,定义约束。 5. 定义分析类型。在左侧Project Schematic中,右键击Analysis Settings,选择Add,然后选择Modal. 在弹出窗口中,定义模态分析的选项。然后,在左侧Project Schematic中,右键击Analysis Settings,选择Add,然后选择Harmonic Response。在弹出窗口中,定义响应分析的选项。 6. 定义模态叠加。在弹出窗口中,选择Advanced Options,然后在Solution Controls下,勾选Enable Modal Superposition。 7. 运行分析。在左侧Project Schematic中,右键击Analysis,选择Solution,然后选择Run。 8. 查看结果。在Analysis下的Solution中,右键击Harmonic Response,选择Insert,然后选择Chart,可以查看响应的结果。在Analysis下的Solution中,右键击Modal,选择Insert,然后选择Chart,可以查看模态分析的结果。 注意:以上步骤仅供参考,具体设置可能因分析对象和分析要求而异。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值