随机振动是自然界中普遍存在的一类振动现象,无法通过确定的时间与空间坐标来描述,每一时刻载荷条件无法预测,由于随机振动造成的产品强度破坏、稳定性低、疲劳损伤等问题不容忽视。Workbench下随机振动(Random Vibration)分析在模态叠加法的基础上,从统计学的角度解释了事件发生的概率与能量密度之间的关系,通过叠加各阶模态的贡献来求解系统的响应,支持输入位移谱密度(PSD Displacement)、速度谱密度(PSD Velocity)、加速度谱密度(PSD Acceleration)等作为试验载荷,求解结构的振动响应为产品改进验证提供支撑。疲劳工具(Fatigue Tool)提供了三种随机振动疲劳分析方法,包括窄带(Narrow Band)、斯坦伯格(Steinberg)、Wirsching。下面介绍列车转向架的随机振动与疲劳分析的基本流程,在模态分析的基础上完成随机振动分析。
00
仿真流程
Workbench-nCode
一、前处理
1. 几何模型系统构建
2. 材料模型系统构建
3. 有限元模型系统构建
二、求解
1. 载荷边界条件
2. 位移边界条件
3. 求解设置
三、后处理
1. 求解过程监视
2. 结果量级判定
3. 结果误差分析
01
前处理
Workbench-nCode
1.1 几何模型系统构建
列车转向架的几何模型在DesignModeler中进行简化,如下图1所示,共16个零部件,将所有零件做共节点处理。
图1 弯管模型
1.2 材料模型系统构建
在工程数据库中定义材料模型参数,结构场分析基本参数:密度7850Kg/m3、弹性模量210E9Pa、泊松比0.3,疲劳分析参数:应力-疲劳曲线表(S-N Curve),应力-疲劳曲线如下图2所示,如果没有合适的数据可使用结构钢材料进行分析。
图2 应力-疲劳曲线(S-N Curve)
1.3 有限元模型系统构建
所有模型采用柔性体进行分析,进入到Mechanical之后,所有实体已做共节点处理不再添加连接关系,材料属性为前述自定材料。网格为四面体低阶Solid187单元,其中单元尺寸为40mm,单元数量为72004,节点数量为19078,单元质量分布如下图3所示。
图3 单元质量分布
模态分析无法添加外载荷,若存在初始载荷,可考虑预应力模态。设定列车转向架下部四个圆孔位置添加固定支撑,如下图4所示。
图4 载荷边界与位移边界
求解设定中查找的模态阶数设定为25,此处保证模态的最大频率为输入随机振动中PSD加速度谱最大频率的1.5倍,其余参数保持默认。
完成模态分析的相关设定后,在Workbench界面下搭建随机振动分析流程,如下图5所示,更新结果后重新打开Mechanical界面,完成结果的传递。
图5 随机振动分析流程
02
求解
Workbench-nCode
2.1 载荷边界条件
在随机振动分析环境下添加加速度功率谱PSD Acceleration,对应在表格内输入数据如下表1所示,加速度谱密度曲线如下图6所示。
表1 加速度密度实验谱数据表
图6 加速度密度谱(PSD)
2.2 位移边界条件
模态分析中已设定固定支撑,此处不再设定。
2.3 求解设置
求解设定中一般默认使用所有的模态阶数,输出控制中把计算速度与计算加速度打开,否则无法进行后续的疲劳计算,阻尼控制中常值阻尼一般默认为0.01,其余参数保持默认即可,如下图7所示。设定完成后即可提交计算。
图7 随机振动求解设定
03
后处理
Workbench-nCode
3.1 求解过程监视
频域上的统计计算,软件很快计算完成。
3.2 结果量级判定
计算结果并不是一个数值,它表示在给定的概率(1 Sigma/2 Sigma/3 Sigma)时间相应内小于标准值。对应的概率可参考正太分布函数,其中±1 Sigma、±2 Sigma、±3 Sigma水平对应的概率如下图8所示。
图8 正态分布函数
3.3 结果误差分析
结果中查看Y方向3Sigma时间响应内变形小于的标准值,如下图9所示,最大变形发生在列车转向架中部为0.56891mm。表明在给定的PSD加速度试验谱条件下,在99.73%响应时间内变形小于标准值0.56891mm。
图9 3Sigma下Y方向变形结果
结果中查看Y方向3Sigma时间响应内等效应力小于的标准值,如下图10所示,可以看到最大应力为37.253MPa,发生在列车转向架中间轴与两侧横梁之间的过渡位置,表明在给定的PSD加速度试验谱条件下,在99.73%响应时间内等效应力小于标准值37.253MPa。
图10 3Sigma下等效应力结果
结果中添加功率谱响应工具(Response PSD Tool),可以查看几何体以及远程点上的功率谱密度,如下图11所示,这里查看几何体上某一硬点的加速度功率谱密度响应曲线,如下图12所示。表明在给定的PSD加速度试验谱作为激励条件下,该点产生的响应中最大加速度为1.4215e9 [(mm/s2)2/Hz],若有条件可通过实验进行对比。
图11 功率谱响应工具(Response PSD Tool)
图12 几何体硬点Y方向的加速度功率谱密度响应情况
结果中添加疲劳工具(Fatigue Tool),查看列车转向架的疲劳寿命情况,这里采用窄带的寿命假设理论,曝光时间为1s指明计算出的疲劳寿命的基本单位是秒,寿命结果如下图14所示,可以看到最大寿命为1e35s,最小寿命为2.3542e18s,注意单位制,可再次基础上将其转换为小时或天。
图13 疲劳工具(Fatigue Tool)
图14 疲劳-寿命结果(Life)