手动完成简单的神经网络(三层)

本文详细介绍了如何从零开始构建一个简单的三层神经网络,包括前向传播、反向传播和权重更新的过程。通过实例代码,帮助读者理解神经网络的工作原理。
摘要由CSDN通过智能技术生成
import numpy as np
def sigmoid (x,deriv=False):
    if (deriv==True):#反向传播.x=sigmoid(x)
        return x*(1-x)
    return 1/(1+np.exp(-x))
# 输入数据
x=np.array([[0,0,1],
          [0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值