1. δ \delta δ函数的各种表达形式
D
i
r
a
c
Dirac
Dirac引入的
δ
\delta
δ函数的定义由下式给出
δ
(
x
)
=
{
+
∞
,
x
=
0
;
0
,
x
≠
0.
\begin{equation}\delta(x)=\left\{\begin{matrix}+\infty,x=0; \\0,x\ne0. \end{matrix}\right.\end{equation}
δ(x)={+∞,x=0;0,x=0.
除此之外,更为重要的条件是
∫ − ∞ + ∞ δ ( x ) d x = 1 \begin{equation}\int_{-\infty}^{+\infty}\delta(x)dx=1\end{equation} ∫−∞+∞δ(x)dx=1
在数学上,
δ
\delta
δ函数可以通过所谓分布
(
D
i
s
t
r
i
b
u
t
i
o
n
)
(Distribution)
(Distribution)理论严格化。它实际上是一个泛函。
在实际计算中,为了方便起见,
δ
\delta
δ函数常常用某些函数的极限形式来表达。在这里,我们给出其最常用的几种表达方式。
-
首先我们有
lim σ → 0 1 2 π σ exp ( − x 2 2 σ ) = δ ( x ) \begin{equation}\lim_{\sigma\to0}\frac{1}{\sqrt[]{2\pi\sigma}}\exp(-\frac{x^2}{2\sigma})=\delta(x)\end{equation} σ→0lim2πσ1exp(−2σx2)=δ(x)实际上,当 σ → 0 \sigma\to0 σ→0时, δ \delta δ函数的定义式显然是满足的,又由于
∫ − ∞ + ∞ 1 2 π σ exp ( − x 2 2 σ ) d x = ∫ − ∞ + ∞ 1 2 π σ exp ( − ( x 2 σ ) 2 ) d x = 1 π ∫ − ∞ + ∞ exp ( − x ~ 2 ) d x ~ = 1 π π = 1 \begin{equation}\begin{aligned}&\int_{-\infty}^{+\infty}\frac{1}{\sqrt[]{2\pi\sigma}}\exp(-\frac{x^2}{2\sigma})dx=\int_{-\infty}^{+\infty}\frac{1}{\sqrt[]{2\pi\sigma}}\exp(-(\frac{x}{\sqrt{2\sigma}})^2)dx\\&=\frac{1}{\sqrt[]{\pi}}\int_{-\infty}^{+\infty}\exp(-\tilde{x}^2)d\tilde{x}=\frac{1}{\sqrt[]{\pi}}\ \sqrt[]{\pi} = 1\end{aligned}\end{equation} ∫−∞+∞2πσ1exp(−2σx2)dx=∫−∞+∞2πσ1exp(−(2σx)2)dx=π1∫−∞+∞exp(−x~2)dx~=π1 π=1
-
其次,我们有
lim α → ∞ sin α x π x = δ ( x ) \begin{equation}\lim _{\alpha \rightarrow \infty} \frac{\sin \alpha x}{\pi x}=\delta(x) \end{equation} α→∞limπxsinαx=δ(x)
为了证明这一表达式,我们注意到,当 α → ∞ \alpha \rightarrow \infty α→∞ 时,这一极限形式地满足 δ \delta δ 函数的定义。但是,为了证明它的积分等于 1 ,我们需要做一些准备工作。
首先,我们注意到积分公式I = ∫ 0 ∞ e − γ x cos β x d x = γ β 2 + γ 2 , γ > 0 \begin{equation}I=\int_{0}^{\infty} e^{-\gamma x} \cos \beta x d x=\frac{\gamma}{\beta^{2}+\gamma^{2}}, \quad \gamma>0\end{equation} I=∫0∞e−γxcosβxdx=β2+γ2γ,γ>0
成立。这是由于连续利用分步积分公式,我们有
I = ∫ 0 ∞ e − γ x cos β x d x = e − γ x sin β x β ∣ 0 ∞ + γ β ∫ 0 ∞ e − γ x sin β x d x = γ β ∫ 0 ∞ e − γ x sin β x d x = − γ β 2 e − γ x cos β x ∣ 0 ∞ − γ 2 β 2 ∫ 0 ∞ e − γ x cos β x d x = γ β 2 − γ 2 β 2 I \begin{equation}\begin{aligned}I&=\int_{0}^{\infty}e^{-\gamma x}\cos \beta xdx\\&=\left.e^{-\gamma x} \frac{\sin\beta x}{\beta}\right|_{0}^{\infty}+\frac{\gamma}{\beta}\int_{0}^{\infty} e^{-\gamma x} \sin \beta x d x \\&=\frac{\gamma}{\beta} \int_{0}^{\infty}e^{-\gamma x}\sin\beta xdx\\&=-\left.\frac{\gamma}{\beta^{2}} e^{-\gamma x}\cos\beta x\right|_{0} ^{\infty}-\frac{\gamma^{2}}{\beta^{2}}\int_{0}^{\infty} e^{-\gamma x} \cos \beta x d x \\ \\&=\frac{\gamma}{\beta^{2}}-\frac{\gamma^{2}}{\beta^{2}} I\end{aligned}\end{equation} I=∫0∞e−γxcosβxdx=e−γxβsinβx 0∞+βγ∫0∞e−γxsinβxdx=βγ∫0∞e−γxsinβxdx=−β2γe−γxcosβx 0∞−β2γ2∫0∞e−γxcosβxdx=β2γ−β2γ2I
移项后,我们有
( 1 + γ 2 β 2 ) I = γ β 2 \begin{equation}\left(1+\frac{\gamma^{2}}{\beta^{2}}\right) I=\frac{\gamma}{\beta^{2}}\end{equation} (1+β2γ2)I=β2γ
将此式的两边同除以 ( 1 + γ 2 β 2 ) \left(1+\frac{\gamma^{2}}{\beta^{2}}\right) (1+β2γ2) 后,我们即可得到式 ( 6 ) (6) (6)。
现在,我们将式 ( 6 ) (6) (6)两边的变量 β \beta β 从 0 0 0 积分到 α \alpha α 。我们得到∫ 0 α d β ( ∫ 0 ∞ e − γ x cos β x d x ) = ∫ 0 ∞ d x e − γ x ( ∫ 0 α d β cos β x ) = ∫ 0 ∞ d x e − γ x sin α x x = ∫ 0 α d β γ β 2 + γ 2 = arctan α γ . \begin{equation}\begin{aligned} & \int_{0}^{\alpha} d \beta\left(\int_{0}^{\infty} e^{-\gamma x} \cos \beta x d x\right)=\int_{0}^{\infty} d x e^{-\gamma x}\left(\int_{0}^{\alpha} d \beta \cos \beta x\right) \\ = & \int_{0}^{\infty} d x e^{-\gamma x} \frac{\sin \alpha x}{x}=\int_{0}^{\alpha} d \beta \frac{\gamma}{\beta^{2}+\gamma^{2}}=\arctan \frac{\alpha}{\gamma} . \end{aligned}\end{equation} =∫0αdβ(∫0∞e−γxcosβxdx)=∫0∞dxe−γx(∫0αdβcosβx)∫0∞dxe−γxxsinαx=∫0αdββ2+γ2γ=arctanγα.
因此,我们有
lim γ → 0 ∫ 0 ∞ d x e − γ x sin α x x = ∫ 0 ∞ d x sin α x x = lim γ → 0 arctan α γ = arctan ∞ = π 2 \begin{equation}\lim_{\gamma \rightarrow 0}\int_{0}^{\infty} dx e^{-\gamma x}\frac{\sin\alpha x}{x}=\int_{0}^{\infty} d x \frac{\sin \alpha x}{x}=\lim _{\gamma \rightarrow 0} \arctan \frac{\alpha}{\gamma}=\arctan \infty=\frac{\pi}{2}\end{equation} γ→0lim∫0∞dxe−γxxsinαx=∫0∞dxxsinαx=γ→0limarctanγα=arctan∞=2π
现在,我们可以完成我们的证明了。我们有∫ − ∞ ∞ sin α x π x d x = 2 ∫ 0 ∞ sin α x π x d x = 2 π ⋅ π 2 = 1 \begin{equation}\int_{-\infty}^{\infty} \frac{\sin \alpha x}{\pi x} d x=2 \int_{0}^{\infty} \frac{\sin \alpha x}{\pi x} d x=\frac{2}{\pi} \cdot \frac{\pi}{2}=1\end{equation} ∫−∞∞πxsinαxdx=2∫0∞πxsinαxdx=π2⋅2π=1
因此,命题得证。
-
接下来,我们有
1 2 π ∫ − ∞ ∞ e i k x d k = δ ( x ) \begin{equation}\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k x} d k=\delta(x)\end{equation} 2π1∫−∞∞eikxdk=δ(x)
事实上,直接的计算给出
1 2 π ∫ − ∞ ∞ e i k x d k = lim α → ∞ 1 2 π ∫ − α α e i k x d k = lim α → ∞ 1 2 π e i k x i x ∣ − α α = lim α → ∞ 1 π e i α x − e − i α x 2 i x = lim α → ∞ 1 π sin α x x = δ ( x ) . \begin{equation}\begin{aligned} & \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k x} d k=\lim _{\alpha \rightarrow \infty} \frac{1}{2 \pi} \int_{-\alpha}^{\alpha} e^{i k x} d k=\left.\lim_{\alpha \rightarrow \infty} \frac{1}{2 \pi} \frac{e^{i k x}}{i x}\right|_{-\alpha} ^{\alpha} \\ = & \lim _{\alpha \rightarrow \infty} \frac{1}{\pi} \frac{e^{i \alpha x}-e^{-i \alpha x}}{2 i x}=\lim _{\alpha \rightarrow \infty} \frac{1}{\pi} \frac{\sin \alpha x}{x}=\delta(x) . \end{aligned}\end{equation} =2π1∫−∞∞eikxdk=α→∞lim2π1∫−ααeikxdk=α→∞lim2π1ixeikx −ααα→∞limπ12ixeiαx−e−iαx=α→∞limπ1xsinαx=δ(x).
-
最后,我们有
lim ϵ → 0 + 1 π ϵ x 2 + ϵ 2 = δ ( x ) \begin{equation}\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{\pi} \frac{\epsilon}{x^{2}+\epsilon^{2}}=\delta(x)\end{equation} ϵ→0+limπ1x2+ϵ2ϵ=δ(x)
首先,当 x ≠ 0 x \neq 0 x=0 时,上式趋向于零。而当 x = 0 x=0 x=0 时,上式为 ∞ \infty ∞ 。其次,我们有lim ϵ → 0 + ∫ − ∞ ∞ 1 π ϵ x 2 + ϵ 2 d x = lim ϵ → 0 + 1 π arctan x ϵ ∣ − ∞ ∞ = 1 π [ arctan ∞ − arctan ( − ∞ ) ] = 1 \begin{equation}\lim_{\epsilon\rightarrow0^{+}}\int_{-\infty}^{\infty} \frac{1}{\pi}\frac{\epsilon}{x^{2}+\epsilon^{2}}dx=\left.\lim_{\epsilon\rightarrow0^{+}}\frac{1}{\pi}\arctan\frac{x}{\epsilon}\right|_{-\infty}^{\infty}=\frac{1}{\pi}[\arctan\infty-\arctan(-\infty)]=1\end{equation} ϵ→0+lim∫−∞∞π1x2+ϵ2ϵdx=ϵ→0+limπ1arctanϵx −∞∞=π1[arctan∞−arctan(−∞)]=1
因此,上式成立。
2 δ \delta δ函数的一些性质
-
δ \delta δ函数是偶函数。即我们有
δ ( − x ) = δ ( x ) \begin{equation}\delta(-x)=\delta(x)\end{equation} δ(−x)=δ(x)
-
对于任何连续函数 f ( x ) f(x) f(x) ,下面的等式
∫ − ∞ ∞ f ( x ) δ ( x ) d x = f ( 0 ) \begin{equation}\int_{-\infty}^{\infty} f(x) \delta(x) d x=f(0)\end{equation} ∫−∞∞f(x)δ(x)dx=f(0)
成立。
-
对于任何连续函数 f(x) ,下面的等式
∫ − ∞ ∞ f ( x ) δ ( x − a ) d x = f ( a ) \begin{equation}\int_{-\infty}^{\infty} f(x) \delta(x-a) d x=f(a)\end{equation} ∫−∞∞f(x)δ(x−a)dx=f(a)
成立。
-
δ ( a x ) = 1 ∣ a ∣ δ ( x ) \delta(a x)=\frac{1}{|a|} \delta(x) δ(ax)=∣a∣1δ(x)
这是由于,对于任何连续函数 f ( x ) f(x) f(x) ,利用 δ \delta δ 函数是偶函数这一事实,我们有∫ − ∞ ∞ f ( x ) δ ( a x ) d x = ∫ − ∞ ∞ f ( x ) δ ( ∣ a ∣ x ) d x \begin{equation}\int_{-\infty}^{\infty} f(x) \delta(a x) d x=\int_{-\infty}^{\infty} f(x) \delta(|a| x) d x\end{equation} ∫−∞∞f(x)δ(ax)dx=∫−∞∞f(x)δ(∣a∣x)dx
现在令 ∣ a ∣ x = x ′ |a| x=x^{\prime} ∣a∣x=x′ ,我们有
∫ − ∞ ∞ f ( x ) δ ( a x ) d x = 1 ∣ a ∣ ∫ − ∞ ∞ f ( x ′ ∣ a ∣ ) δ ( x ′ ) d x ′ = 1 ∣ a ∣ f ( 0 ) = ∫ − ∞ ∞ f ( x ) ( 1 ∣ a ∣ δ ( x ) ) d x \begin{equation}\int_{-\infty}^{\infty} f(x) \delta(a x) d x=\frac{1}{|a|} \int_{-\infty}^{\infty} f\left(\frac{x^{\prime}}{|a|}\right) \delta\left(x^{\prime}\right) d x^{\prime}=\frac{1}{|a|} f(0)=\int_{-\infty}^{\infty} f(x)\left(\frac{1}{|a|} \delta(x)\right) d x\end{equation} ∫−∞∞f(x)δ(ax)dx=∣a∣1∫−∞∞f(∣a∣x′)δ(x′)dx′=∣a∣1f(0)=∫−∞∞f(x)(∣a∣1δ(x))dx
因此,上式成立。
-
考虑一个二次以上可导的函数 φ ( x ) \varphi(x) φ(x) 。设 { x i } \left\{x_{i}\right\} {xi} 为其单零点的集合。即在任一点 x i x_{i} xi 处,我们有
φ ( x i ) = 0 , φ ′ ( x i ) ≠ 0 \begin{equation}\varphi\left(x_{i}\right)=0, \quad \varphi^{\prime}\left(x_{i}\right) \neq 0\end{equation} φ(xi)=0,φ′(xi)=0
那么,我们有
δ ( φ ( x ) ) = ∑ i N δ ( x − x i ) ∣ φ ′ ( x i ) ∣ . \begin{equation}\delta(\varphi(x))=\sum_{i}^{N} \frac{\delta\left(x-x_{i}\right)}{\left|\varphi^{\prime}\left(x_{i}\right)\right|} .\end{equation} δ(φ(x))=i∑N∣φ′(xi)∣δ(x−xi).
按照定义, δ \delta δ 函数仅在 φ ( x ) = 0 \varphi(x)=0 φ(x)=0 处不为零,因此,对于任何连续函数 f ( x ) f(x) f(x) ,我们有∫ − ∞ ∞ f ( x ) δ ( φ ( x ) ) d x = ∑ i N ∫ x i − ϵ i x i + ϵ i f ( x ) δ ( φ ( x ) ) d x ≡ ∑ i N F i \begin{equation}\int_{-\infty}^{\infty} f(x) \delta(\varphi(x)) d x=\sum_{i}^{N} \int_{x_{i}-\epsilon_{i}}^{x_{i}+\epsilon_{i}} f(x) \delta(\varphi(x)) d x \equiv \sum_{i}^{N} F_{i} \end{equation} ∫−∞∞f(x)δ(φ(x))dx=i∑N∫xi−ϵixi+ϵif(x)δ(φ(x))dx≡i∑NFi
下面,我们取某一个积分值 F i F_{i} Fi 为例。
由于 φ ′ ( x i ) ≠ 0 \varphi^{\prime}\left(x_{i}\right) \neq 0 φ′(xi)=0 ,我们总可以将 ϵ i \epsilon_{i} ϵi 取得到如此之小,使得 φ ( x ) \varphi(x) φ(x) 在区间 ( x i − ϵ i , x i + ϵ i ) \left(x_{i}-\right. \left.\epsilon_{i}, x_{i}+\epsilon_{i}\right) (xi−ϵi,xi+ϵi) 上是单调的。因此,我们可以引入新的变量 u = φ ( x ) u=\varphi(x) u=φ(x) ,使得u 1 = φ ( x i − ϵ i ) , u 2 = φ ( x i ) = 0 , u 3 = φ ( x i + ϵ i ) \begin{equation}u_{1}=\varphi\left(x_{i}-\epsilon_{i}\right), \quad u_{2}=\varphi\left(x_{i}\right)=0, \quad u_{3}=\varphi\left(x_{i}+\epsilon_{i}\right)\end{equation} u1=φ(xi−ϵi),u2=φ(xi)=0,u3=φ(xi+ϵi)
特别是当 φ ′ ( x i ) > 0 \varphi^{\prime}\left(x_{i}\right)>0 φ′(xi)>0 时,我们有
u max = u 3 , u min = u 1 . \begin{equation}u_{\max }=u_{3}, \quad u_{\min }=u_{1} .\end{equation} umax=u3,umin=u1.
而当 φ ′ ( x i ) < 0 \varphi^{\prime}\left(x_{i}\right)<0 φ′(xi)<0 时,我们又有
u max = u 1 , u min = u 3 \begin{equation}u_{\max}=u_{1}, \quad u_{\min}=u_{3}\end{equation} umax=u1,umin=u3
利用这些记号,我们可以将 F i F_{i} Fi 改写成
F i = ∫ x i − ϵ i x i + ϵ i f ( x ) δ ( φ ( x ) ) d x = ∫ u min u max f ( φ − 1 ( u ) ) δ ( u ) d u ∣ φ ′ ( φ − 1 ( u ) ) ∣ = f ( φ − 1 ( u 2 ) ) ∣ φ ′ ( φ − 1 ( u 2 ) ) ∣ = f ( x i ) ∣ φ ′ ( x i ) ∣ . \begin{equation}\begin{aligned} F_{i} & =\int_{x_{i}-\epsilon_{i}}^{x_{i}+\epsilon_{i}} f(x) \delta(\varphi(x)) d x=\int_{u_{\min }}^{u_{\max }} f\left(\varphi^{-1}(u)\right) \delta(u) \frac{d u}{\left|\varphi^{\prime}\left(\varphi^{-1}(u)\right)\right|} \\ & =\frac{f\left(\varphi^{-1}\left(u_{2}\right)\right)}{\left|\varphi^{\prime}\left(\varphi^{-1}\left(u_{2}\right)\right)\right|}=\frac{f\left(x_{i}\right)}{\left|\varphi^{\prime}\left(x_{i}\right)\right|} . \end{aligned}\end{equation} Fi=∫xi−ϵixi+ϵif(x)δ(φ(x))dx=∫uminumaxf(φ−1(u))δ(u)∣φ′(φ−1(u))∣du=∣φ′(φ−1(u2))∣f(φ−1(u2))=∣φ′(xi)∣f(xi).
因此,积分 ( 23 ) (23) (23)可以被写作
∫ − ∞ ∞ f ( x ) δ ( φ ( x ) ) d x = ∑ i N ∫ x i − ϵ i x i + ϵ i f ( x ) δ ( φ ( x ) ) d x = ∑ i N f ( x i ) ∣ φ ′ ( x i ) ∣ = ∫ − ∞ ∞ f ( x ) ∑ i = 1 N ( δ ( x − x i ) ∣ φ ′ ( x i ) ∣ ) d x . \begin{equation}\begin{aligned} & \int_{-\infty}^{\infty} f(x) \delta(\varphi(x)) d x=\sum_{i}^{N} \int_{x_{i}-\epsilon_{i}}^{x_{i}+\epsilon_{i}} f(x) \delta(\varphi(x)) d x=\sum_{i}^{N} \frac{f\left(x_{i}\right)}{\left|\varphi^{\prime}\left(x_{i}\right)\right|} \\ = & \int_{-\infty}^{\infty} f(x) \sum_{i=1}^{N}\left(\frac{\delta\left(x-x_{i}\right)}{\left|\varphi^{\prime}\left(x_{i}\right)\right|}\right) d x . \end{aligned}\end{equation} =∫−∞∞f(x)δ(φ(x))dx=i∑N∫xi−ϵixi+ϵif(x)δ(φ(x))dx=i∑N∣φ′(xi)∣f(xi)∫−∞∞f(x)i=1∑N(∣φ′(xi)∣δ(x−xi))dx.
这样,我们就证明了我们上述公式的正确性。