信号的镜像频率

1. 镜像频率的产生

在使用AWG发射正弦波的时候会不可避免的产生镜像频率,当发射频率靠近奈奎斯特频率时,会产生严重的镜像效应,那么镜像频率到底是怎么产生的呢?假设 A W G AWG AWG的发射采样率为 f s f_{s} fs,发射的正弦波的幅值为 A A A,频率的 f 0 f_{0} f0,初相位 φ 0 \varphi_{0} φ0,那么发射的数字信号可以表示为:
x [ k ] = A sin ⁡ ( 2 π f 0 f s k + φ 0 ) = − A sin ⁡ ( 2 π f s − f 0 f s k − φ 0 ) = A sin ⁡ ( 2 π f s − f 0 f s k + ( π − φ 0 ) ) \begin{aligned}x[k] &= A\sin\left(2\pi\frac{f_{0}}{f_{s}}k+\varphi_{0}\right)\\&=-A\sin\left(2\pi\frac{f_{s}-f_{0}}{f_{s}}k-\varphi_{0}\right)\\&=A\sin\left(2\pi\frac{f_{s}-f_{0}}{f_{s}}k+\left(\pi-\varphi_{0}\right)\right)\end{aligned} x[k]=Asin(2πfsf0k+φ0)=Asin(2πfsfsf0kφ0)=Asin(2πfsfsf0k+(πφ0))

由上式可将,当 A W G AWG AWG发射一个频率为 f 0 f_{0} f0的正弦波时,就相当于发射了一个频率为 f s − f 0 f_{s}-f_{0} fsf0的带有相移为 Δ φ = π − 2 φ 0 \Delta\varphi = \pi-2\varphi_{0} Δφ=π2φ0的正弦波。当 f 0 f_{0} f0较小时,镜像 f s − f 0 f_{s}-f_{0} fsf0在第二奈奎斯特区域的远端,此时二者能量差异较大且频率间隔较大,对信号的干扰较小;但是当 f 0 f_{0} f0靠近第 f s / 2 f_{s}/2 fs/2时,镜像 f s − f 0 f_{s}-f_{0} fsf0靠近第二奈奎斯特区域的近端,此时二者能量差异较小,且频率差异较小,对信号的干扰较大;示意图如下。
画的丑!

2. 镜像成对出现

实际上镜像频率在整个频带上都是与信号的谐波成对出现的,基于上面的公式不难得到这个结果,此处就不做详细的分析了,下面是一个仿真的结果
在这里插入图片描述

s i n e w a v e sinewave sinewave频率为 2.3   G H z 2.3\ GHz 2.3 GHz,发射采样率为 5   G H z 5\ GHz 5 GHz,分析带宽为 40   G H z 40\ GHz 40 GHz,可见镜像与谐波成对出现

下面是两个实测的结果
在这里插入图片描述 s i n e w a v e sinewave sinewave频率为 2.4   G H z 2.4\ GHz 2.4 GHz,发射采样率为 5   G H z 5\ GHz 5 GHz,分析带宽为 8   G H z 8\ GHz 8 GHz
在这里插入图片描述

s i n e w a v e sinewave sinewave频率为 2.3   G H z 2.3\ GHz 2.3 GHz,发射采样率为 5   G H z 5\ GHz 5 GHz,分析带宽为 8   G H z 8\ GHz 8 GHz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值